Adding img2img step
Browse files
app.py
CHANGED
@@ -4,6 +4,13 @@ import random
|
|
4 |
from PIL import Image
|
5 |
import cv2
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import gradio as gr
|
8 |
from glob import glob
|
9 |
from omegaconf import OmegaConf
|
@@ -216,11 +223,18 @@ class AnimateController:
|
|
216 |
image.resize((512, 512))
|
217 |
|
218 |
# Save the resized image to the specified output path
|
219 |
-
image.save("resized.jpg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
sample = pipeline(
|
222 |
prompt_textbox,
|
223 |
-
init_image = "
|
224 |
negative_prompt = negative_prompt_textbox,
|
225 |
num_inference_steps = 25,
|
226 |
guidance_scale = 8.,
|
|
|
4 |
from PIL import Image
|
5 |
import cv2
|
6 |
|
7 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
8 |
+
|
9 |
+
|
10 |
+
model_id_or_path = "runwayml/stable-diffusion-v1-5"
|
11 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
|
12 |
+
pipe = pipe.to("cuda")
|
13 |
+
|
14 |
import gradio as gr
|
15 |
from glob import glob
|
16 |
from omegaconf import OmegaConf
|
|
|
223 |
image.resize((512, 512))
|
224 |
|
225 |
# Save the resized image to the specified output path
|
226 |
+
#image.save("resized.jpg")
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
# Convert the image to SD by Img2Img pipeline
|
231 |
+
|
232 |
+
sd_images = pipe(prompt=prompt_textbox, image=init_image, strength=0.75, guidance_scale=7.5).images
|
233 |
+
sd_images[0].save("sd_converted.png")
|
234 |
|
235 |
sample = pipeline(
|
236 |
prompt_textbox,
|
237 |
+
init_image = "sd_converted.jpg",
|
238 |
negative_prompt = negative_prompt_textbox,
|
239 |
num_inference_steps = 25,
|
240 |
guidance_scale = 8.,
|