Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,332 Bytes
e02c605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
# -*- coding : utf-8 -*-
# @FileName : attn_injection.py
# @Author : Ruixiang JIANG (Songrise)
# @Time : Mar 20, 2024
# @Github : https://github.com/songrise
# @Description: implement attention dump and attention injection for CPSD
from __future__ import annotations
from dataclasses import dataclass
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline
import torch
import torch.nn as nn
from torch.nn import functional as nnf
from diffusers.models import attention_processor
import einops
from diffusers.models import unet_2d_condition, attention, transformer_2d, resnet
from diffusers.models.unets import unet_2d_blocks
# from diffusers.models.unet_2d import CrossAttnUpBlock2D
from typing import Optional, List
T = torch.Tensor
import os
@dataclass(frozen=True)
class StyleAlignedArgs:
share_group_norm: bool = True
share_layer_norm: bool = (True,)
share_attention: bool = True
adain_queries: bool = True
adain_keys: bool = True
adain_values: bool = False
full_attention_share: bool = False
shared_score_scale: float = 1.0
shared_score_shift: float = 0.0
only_self_level: float = 0.0
def expand_first(
feat: T,
scale=1.0,
) -> T:
b = feat.shape[0]
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
if scale == 1:
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
else:
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
return feat_style.reshape(*feat.shape)
def concat_first(feat: T, dim=2, scale=1.0) -> T:
feat_style = expand_first(feat, scale=scale)
return torch.cat((feat, feat_style), dim=dim)
def calc_mean_std(feat, eps: float = 1e-5) -> tuple[T, T]:
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
feat_mean = feat.mean(dim=-2, keepdims=True)
return feat_mean, feat_std
def adain(feat: T) -> T:
feat_mean, feat_std = calc_mean_std(feat)
feat_style_mean = expand_first(feat_mean)
feat_style_std = expand_first(feat_std)
feat = (feat - feat_mean) / feat_std
feat = feat * feat_style_std + feat_style_mean
return feat
def my_adain(feat: T) -> T:
batch_size = feat.shape[0] // 2
feat_mean, feat_std = calc_mean_std(feat)
feat_uncond_content, feat_cond_content = feat[0], feat[batch_size]
feat_style_mean = torch.stack((feat_mean[1], feat_mean[batch_size + 1])).unsqueeze(
1
)
feat_style_mean = feat_style_mean.expand(2, batch_size, *feat_mean.shape[1:])
feat_style_mean = feat_style_mean.reshape(*feat_mean.shape) # (6, D)
feat_style_std = torch.stack((feat_std[1], feat_std[batch_size + 1])).unsqueeze(1)
feat_style_std = feat_style_std.expand(2, batch_size, *feat_std.shape[1:])
feat_style_std = feat_style_std.reshape(*feat_std.shape)
feat = (feat - feat_mean) / feat_std
feat = feat * feat_style_std + feat_style_mean
feat[0] = feat_uncond_content
feat[batch_size] = feat_cond_content
return feat
class DefaultAttentionProcessor(nn.Module):
def __init__(self):
super().__init__()
# self.processor = attention_processor.AttnProcessor2_0()
self.processor = attention_processor.AttnProcessor() # for torch 1.11.0
def __call__(
self,
attn: attention_processor.Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
**kwargs,
):
return self.processor(
attn, hidden_states, encoder_hidden_states, attention_mask
)
class ArtistAttentionProcessor(DefaultAttentionProcessor):
def __init__(
self,
inject_query: bool = True,
inject_key: bool = True,
inject_value: bool = True,
use_adain: bool = False,
name: str = None,
use_content_to_style_injection=False,
):
super().__init__()
self.inject_query = inject_query
self.inject_key = inject_key
self.inject_value = inject_value
self.share_enabled = True
self.use_adain = use_adain
self.__custom_name = name
self.content_to_style_injection = use_content_to_style_injection
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
#######Code from original attention impl
residual = hidden_states
# args = () if USE_PEFT_BACKEND else (scale,)
args = ()
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states
)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
######## inject begins here, here we assume the style image is always the 2nd instance in batch
batch_size = query.shape[0] // 2 # divide 2 since CFG is used
if self.share_enabled and batch_size > 1: # when == 1, no need to inject,
ref_q_uncond, ref_q_cond = query[1, ...].unsqueeze(0), query[
batch_size + 1, ...
].unsqueeze(0)
ref_k_uncond, ref_k_cond = key[1, ...].unsqueeze(0), key[
batch_size + 1, ...
].unsqueeze(0)
ref_v_uncond, ref_v_cond = value[1, ...].unsqueeze(0), value[
batch_size + 1, ...
].unsqueeze(0)
if self.inject_query:
if self.use_adain:
query = my_adain(query)
if self.content_to_style_injection:
content_v_uncond = value[0, ...].unsqueeze(0)
content_v_cond = value[batch_size, ...].unsqueeze(0)
query[1] = content_v_uncond
query[batch_size + 1] = content_v_cond
else:
query[2] = ref_q_uncond
query[batch_size + 2] = ref_q_cond
if self.inject_key:
if self.use_adain:
key = my_adain(key)
else:
key[2] = ref_k_uncond
key[batch_size + 2] = ref_k_cond
if self.inject_value:
if self.use_adain:
value = my_adain(value)
else:
value[2] = ref_v_uncond
value[batch_size + 2] = ref_v_cond
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# inject here, swap the attention map
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class ArtistResBlockWrapper(nn.Module):
def __init__(
self, block: resnet.ResnetBlock2D, injection_method: str, name: str = None
):
super().__init__()
self.block = block
self.output_scale_factor = self.block.output_scale_factor
self.injection_method = injection_method
self.name = name
def forward(
self,
input_tensor: torch.FloatTensor,
temb: torch.FloatTensor,
scale: float = 1.0,
):
if self.injection_method == "hidden":
feat = self.block(
input_tensor, temb, scale
) # when disentangle, feat should be [recon, uncontrolled style, controlled style]
batch_size = feat.shape[0] // 2
if batch_size == 1:
return feat
# the features of the reconstruction
recon_feat_uncond, recon_feat_cond = feat[0, ...].unsqueeze(0), feat[
batch_size, ...
].unsqueeze(0)
# residual
input_tensor = self.block.conv_shortcut(input_tensor)
input_content_uncond, input_content_cond = input_tensor[0, ...].unsqueeze(
0
), input_tensor[batch_size, ...].unsqueeze(0)
# since feat = (input + h) / scale
recon_feat_uncond, recon_feat_cond = (
recon_feat_uncond * self.output_scale_factor,
recon_feat_cond * self.output_scale_factor,
)
h_content_uncond, h_content_cond = (
recon_feat_uncond - input_content_uncond,
recon_feat_cond - input_content_cond,
)
# only share the h, the residual is not shared
h_shared = torch.cat(
([h_content_uncond] * batch_size) + ([h_content_cond] * batch_size),
dim=0,
)
output_feat_shared = (input_tensor + h_shared) / self.output_scale_factor
# do not inject the feat for the 2nd instance, which is uncontrolled style
output_feat_shared[1] = feat[1]
output_feat_shared[batch_size + 1] = feat[batch_size + 1]
# uncomment to not inject content to controlled style
# output_feat_shared[2] = feat[2]
# output_feat_shared[batch_size + 2] = feat[batch_size + 2]
return output_feat_shared
else:
raise NotImplementedError(f"Unknown injection method {self.injection_method}")
class SharedResBlockWrapper(nn.Module):
def __init__(self, block: resnet.ResnetBlock2D):
super().__init__()
self.block = block
self.output_scale_factor = self.block.output_scale_factor
self.share_enabled = True
def forward(
self,
input_tensor: torch.FloatTensor,
temb: torch.FloatTensor,
scale: float = 1.0,
):
if self.share_enabled:
feat = self.block(input_tensor, temb, scale)
batch_size = feat.shape[0] // 2
if batch_size == 1:
return feat
# the features of the reconstruction
feat_uncond, feat_cond = feat[0, ...].unsqueeze(0), feat[
batch_size, ...
].unsqueeze(0)
# residual
input_tensor = self.block.conv_shortcut(input_tensor)
input_content_uncond, input_content_cond = input_tensor[0, ...].unsqueeze(
0
), input_tensor[batch_size, ...].unsqueeze(0)
# since feat = (input + h) / scale
feat_uncond, feat_cond = (
feat_uncond * self.output_scale_factor,
feat_cond * self.output_scale_factor,
)
h_content_uncond, h_content_cond = (
feat_uncond - input_content_uncond,
feat_cond - input_content_cond,
)
# only share the h, the residual is not shared
h_shared = torch.cat(
([h_content_uncond] * batch_size) + ([h_content_cond] * batch_size),
dim=0,
)
output_shared = (input_tensor + h_shared) / self.output_scale_factor
return output_shared
else:
return self.block(input_tensor, temb, scale)
def register_attention_processors(
pipe,
base_dir: str = None,
disentangle: bool = False,
attn_mode: str = "artist",
resnet_mode: str = "hidden",
share_resblock: bool = True,
share_attn: bool = True,
share_cross_attn: bool = False,
share_attn_layers: Optional[int] = None,
share_resnet_layers: Optional[int] = None,
c2s_layers: Optional[int] = [0, 1],
share_query: bool = True,
share_key: bool = True,
share_value: bool = True,
use_adain: bool = False,
):
unet: unet_2d_condition.UNet2DConditionModel = pipe.unet
if isinstance(pipe, StableDiffusionPipeline):
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[
1:
] # skip the first block, which is UpBlock2D
elif isinstance(pipe, StableDiffusionXLPipeline):
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[:-1]
layer_idx_attn = 0
layer_idx_resnet = 0
for block in up_blocks:
# each block should have 3 transformer layer
# transformer_layer : transformer_2d.Transformer2DModel
if share_resblock:
if share_resnet_layers is not None:
resnet_wrappers = []
resnets = block.resnets
for resnet_block in resnets:
if layer_idx_resnet not in share_resnet_layers:
resnet_wrappers.append(
resnet_block
) # use original implementation
else:
if disentangle:
resnet_wrappers.append(
ArtistResBlockWrapper(
resnet_block,
injection_method=resnet_mode,
name=f"layer_{layer_idx_resnet}",
)
)
print(
f"Disentangle resnet {resnet_mode} set for layer {layer_idx_resnet}"
)
else:
resnet_wrappers.append(SharedResBlockWrapper(resnet_block))
print(
f"Share resnet feature set for layer {layer_idx_resnet}"
)
layer_idx_resnet += 1
block.resnets = nn.ModuleList(
resnet_wrappers
) # actually apply the change
if share_attn:
for transformer_layer in block.attentions:
transformer_block: attention.BasicTransformerBlock = (
transformer_layer.transformer_blocks[0]
)
self_attn: attention_processor.Attention = transformer_block.attn1
# cross attn does not inject
cross_attn: attention_processor.Attention = transformer_block.attn2
if attn_mode == "artist":
if (
share_attn_layers is not None
and layer_idx_attn in share_attn_layers
):
if layer_idx_attn in c2s_layers:
content_to_style = True
else:
content_to_style = False
pnp_inject_processor = ArtistAttentionProcessor(
inject_query=share_query,
inject_key=share_key,
inject_value=share_value,
use_adain=use_adain,
name=f"layer_{layer_idx_attn}_self",
use_content_to_style_injection=content_to_style,
)
self_attn.set_processor(pnp_inject_processor)
print(
f"Disentangled Pnp inject processor set for self-attention in layer {layer_idx_attn} with c2s={content_to_style}"
)
if share_cross_attn:
cross_attn_processor = ArtistAttentionProcessor(
inject_query=False,
inject_key=True,
inject_value=True,
use_adain=False,
name=f"layer_{layer_idx_attn}_cross",
)
cross_attn.set_processor(cross_attn_processor)
print(
f"Disentangled Pnp inject processor set for cross-attention in layer {layer_idx_attn}"
)
layer_idx_attn += 1
def unset_attention_processors(
pipe,
unset_share_attn: bool = False,
unset_share_resblock: bool = False,
):
unet: unet_2d_condition.UNet2DConditionMode = pipe.unet
if isinstance(pipe, StableDiffusionPipeline):
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[
1:
] # skip the first block, which is UpBlock2D
elif isinstance(pipe, StableDiffusionXLPipeline):
up_blocks: List[unet_2d_blocks.CrossAttnUpBlock2D] = unet.up_blocks[:-1]
block_idx = 1
layer_idx = 0
for block in up_blocks:
if unset_share_resblock:
resnet_origs = []
resnets = block.resnets
for resnet_block in resnets:
if isinstance(resnet_block, SharedResBlockWrapper) or isinstance(
resnet_block, ArtistResBlockWrapper
):
resnet_origs.append(resnet_block.block)
else:
resnet_origs.append(resnet_block)
block.resnets = nn.ModuleList(resnet_origs)
if unset_share_attn:
for transformer_layer in block.attentions:
layer_idx += 1
transformer_block: attention.BasicTransformerBlock = (
transformer_layer.transformer_blocks[0]
)
self_attn: attention_processor.Attention = transformer_block.attn1
cross_attn: attention_processor.Attention = transformer_block.attn2
self_attn.set_processor(DefaultAttentionProcessor())
cross_attn.set_processor(DefaultAttentionProcessor())
block_idx += 1
layer_idx = 0
|