File size: 24,225 Bytes
e02c605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540c169
e02c605
 
 
540c169
e02c605
540c169
e02c605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540c169
e02c605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a107891
cf5026f
e02c605
cf5026f
e02c605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf5026f
e02c605
 
 
 
 
 
 
 
 
 
 
 
 
 
5b23773
2db1c3e
5b14616
08c7296
a7c772e
e02c605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# %%
import argparse, os


import torch
import requests
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from io import BytesIO
from tqdm.auto import tqdm
from matplotlib import pyplot as plt
from torchvision import transforms as tfms
from diffusers import (
    StableDiffusionPipeline,
    DDIMScheduler,
    DiffusionPipeline,
    StableDiffusionXLPipeline,
)
from diffusers.image_processor import VaeImageProcessor
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import save_image
import argparse
import PIL.Image as Image
from torchvision.utils import make_grid
import numpy
from diffusers.schedulers import DDIMScheduler
import torch.nn.functional as F
from models import attn_injection
from omegaconf import OmegaConf
from typing import List, Tuple

import omegaconf
import utils.exp_utils
import json

device = torch.device("cuda")


def _get_text_embeddings(prompt: str, tokenizer, text_encoder, device):
    # Tokenize text and get embeddings
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids

    with torch.no_grad():
        prompt_embeds = text_encoder(
            text_input_ids.to(device),
            output_hidden_states=True,
        )

    pooled_prompt_embeds = prompt_embeds[0]
    prompt_embeds = prompt_embeds.hidden_states[-2]
    if prompt == "":
        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        return negative_prompt_embeds, negative_pooled_prompt_embeds
    return prompt_embeds, pooled_prompt_embeds


def _encode_text_sdxl(model: StableDiffusionXLPipeline, prompt: str):
    device = model._execution_device
    (
        prompt_embeds,
        pooled_prompt_embeds,
    ) = _get_text_embeddings(prompt, model.tokenizer, model.text_encoder, device)
    (
        prompt_embeds_2,
        pooled_prompt_embeds_2,
    ) = _get_text_embeddings(prompt, model.tokenizer_2, model.text_encoder_2, device)
    prompt_embeds = torch.cat((prompt_embeds, prompt_embeds_2), dim=-1)
    text_encoder_projection_dim = model.text_encoder_2.config.projection_dim
    add_time_ids = model._get_add_time_ids(
        (1024, 1024), (0, 0), (1024, 1024), torch.float16, text_encoder_projection_dim
    ).to(device)
    # repeat the time ids for each prompt
    add_time_ids = add_time_ids.repeat(len(prompt), 1)
    added_cond_kwargs = {
        "text_embeds": pooled_prompt_embeds_2,
        "time_ids": add_time_ids,
    }
    return added_cond_kwargs, prompt_embeds


def _encode_text_sdxl_with_negative(
    model: StableDiffusionXLPipeline, prompt: List[str]
):

    B = len(prompt)
    added_cond_kwargs, prompt_embeds = _encode_text_sdxl(model, prompt)
    added_cond_kwargs_uncond, prompt_embeds_uncond = _encode_text_sdxl(
        model, ["" for _ in range(B)]
    )
    prompt_embeds = torch.cat(
        (
            prompt_embeds_uncond,
            prompt_embeds,
        )
    )
    added_cond_kwargs = {
        "text_embeds": torch.cat(
            (added_cond_kwargs_uncond["text_embeds"], added_cond_kwargs["text_embeds"])
        ),
        "time_ids": torch.cat(
            (added_cond_kwargs_uncond["time_ids"], added_cond_kwargs["time_ids"])
        ),
    }
    return added_cond_kwargs, prompt_embeds


# Sample function (regular DDIM)
@torch.no_grad()
def sample(
    pipe,
    prompt,
    start_step=0,
    start_latents=None,
    intermediate_latents=None,
    guidance_scale=3.5,
    num_inference_steps=30,
    num_images_per_prompt=1,
    do_classifier_free_guidance=True,
    negative_prompt="",
    device=device,
):
    negative_prompt = [""] * len(prompt)
    # Encode prompt
    if isinstance(pipe, StableDiffusionPipeline):
        text_embeddings = pipe._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
        )
        added_cond_kwargs = None
    elif isinstance(pipe, StableDiffusionXLPipeline):
        added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
            pipe, prompt
        )

    # Set num inference steps
    pipe.scheduler.set_timesteps(num_inference_steps, device=device)

    # Create a random starting point if we don't have one already
    if start_latents is None:
        start_latents = torch.randn(1, 4, 64, 64, device=device)
        start_latents *= pipe.scheduler.init_noise_sigma

    latents = start_latents.clone()

    latents = latents.repeat(len(prompt), 1, 1, 1)
    # assume that the first latent is used for reconstruction
    for i in tqdm(range(start_step, num_inference_steps)):
        latents[0] = intermediate_latents[(-i + 1)]
        t = pipe.scheduler.timesteps[i]

        # Expand the latents if we are doing classifier free guidance
        latent_model_input = (
            torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        )
        latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)

        # Predict the noise residual
        noise_pred = pipe.unet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embeddings,
            added_cond_kwargs=added_cond_kwargs,
        ).sample

        # Perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (
                noise_pred_text - noise_pred_uncond
            )
        latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample

    # Post-processing
    images = pipe.decode_latents(latents)
    images = pipe.numpy_to_pil(images)

    return images


# Sample function (regular DDIM), but disentangle the content and style
@torch.no_grad()
def sample_disentangled(
    pipe,
    prompt,
    start_step=0,
    start_latents=None,
    intermediate_latents=None,
    guidance_scale=3.5,
    num_inference_steps=30,
    num_images_per_prompt=1,
    do_classifier_free_guidance=True,
    use_content_anchor=True,
    negative_prompt="",
    device=device,
):
    negative_prompt = [""] * len(prompt)
    vae_decoder = VaeImageProcessor(vae_scale_factor=pipe.vae.config.scaling_factor)
    # Encode prompt
    if isinstance(pipe, StableDiffusionPipeline):
        text_embeddings = pipe._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
        )
        added_cond_kwargs = None
    elif isinstance(pipe, StableDiffusionXLPipeline):
        added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
            pipe, prompt
        )

    # Set num inference steps
    pipe.scheduler.set_timesteps(num_inference_steps, device=device)
    # save

    latent_shape = (
        (1, 4, 64, 64) if isinstance(pipe, StableDiffusionPipeline) else (1, 4, 64, 64)
    )
    generative_latent = torch.randn(latent_shape, device=device)
    generative_latent *= pipe.scheduler.init_noise_sigma

    latents = start_latents.clone()

    latents = latents.repeat(len(prompt), 1, 1, 1)
    # randomly initialize the 1st latent for generation

    latents[1] = generative_latent
    # assume that the first latent is used for reconstruction
    for i in range(start_step, num_inference_steps):
        if use_content_anchor:
            latents[0] = intermediate_latents[-(i + 1)]
        t = pipe.scheduler.timesteps[i]

        # Expand the latents if we are doing classifier free guidance
        latent_model_input = (
            torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        )
        latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)

        # Predict the noise residual
        noise_pred = pipe.unet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embeddings,
            added_cond_kwargs=added_cond_kwargs,
        ).sample

        # Perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (
                noise_pred_text - noise_pred_uncond
            )

        latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample

        # Post-processing
        # images = vae_decoder.postprocess(latents)
    pipe.vae.to(dtype=torch.float32)
    latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
    latents = 1 / pipe.vae.config.scaling_factor * latents
    images = pipe.vae.decode(latents, return_dict=False)[0]
    images = (images / 2 + 0.5).clamp(0, 1)
    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
    images = images.cpu().permute(0, 2, 3, 1).float().numpy()
    images = pipe.numpy_to_pil(images)
    if isinstance(pipe, StableDiffusionXLPipeline):
        pipe.vae.to(dtype=torch.float16)

    return images



## Inversion
@torch.no_grad()
def invert(
    pipe,
    start_latents,
    prompt,
    guidance_scale=3.5,
    num_inference_steps=50,
    num_images_per_prompt=1,
    do_classifier_free_guidance=True,
    negative_prompt="",
    device=device,
):

    # Encode prompt
    if isinstance(pipe, StableDiffusionPipeline):
        text_embeddings = pipe._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
        )
        added_cond_kwargs = None
        latents = start_latents.clone().detach()
    elif isinstance(pipe, StableDiffusionXLPipeline):
        added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
            pipe, [prompt]
        )  # Latents are now the specified start latents
        latents = start_latents.clone().detach().half()

    # We'll keep a list of the inverted latents as the process goes on
    intermediate_latents = []

    # Set num inference steps
    pipe.scheduler.set_timesteps(num_inference_steps, device=device)

    # Reversed timesteps <<<<<<<<<<<<<<<<<<<<
    timesteps = list(reversed(pipe.scheduler.timesteps))

    for i in range(num_inference_steps):
        if i >= num_inference_steps - 1:
            continue

        t = timesteps[i]

        # Expand the latents if we are doing classifier free guidance
        latent_model_input = (
            torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        )
        latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)

        # Predict the noise residual
        noise_pred = pipe.unet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embeddings,
            added_cond_kwargs=added_cond_kwargs,
        ).sample

        # Perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (
                noise_pred_text - noise_pred_uncond
            )

        current_t = max(0, t.item() - (1000 // num_inference_steps))  # t
        next_t = t  # min(999, t.item() + (1000 // num_inference_steps)) # t+1
        alpha_t = pipe.scheduler.alphas_cumprod[current_t]
        alpha_t_next = pipe.scheduler.alphas_cumprod[next_t]

        # Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
        latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (
            alpha_t_next.sqrt() / alpha_t.sqrt()
        ) + (1 - alpha_t_next).sqrt() * noise_pred

        # Store
        intermediate_latents.append(latents)

    return torch.cat(intermediate_latents)







def style_image_with_inversion(
    pipe,
    input_image,
    input_image_prompt,
    style_prompt,
    num_steps=100,
    start_step=30,
    guidance_scale=3.5,
    disentangle=False,
    share_attn=False,
    share_cross_attn=False,
    share_resnet_layers=[0, 1],
    share_attn_layers=[],
    c2s_layers=[0, 1],
    share_key=True,
    share_query=True,
    share_value=False,
    use_adain=True,
    use_content_anchor=True,
    output_dir: str = None,
    resnet_mode: str = None,
    return_intermediate=False,
    intermediate_latents=None,
):
    with torch.no_grad():
        pipe.vae.to(dtype=torch.float32)
        latent = pipe.vae.encode(input_image.to(device) * 2 - 1)
        # latent = pipe.vae.encode(input_image.to(device))
        l = pipe.vae.config.scaling_factor * latent.latent_dist.sample()
        if isinstance(pipe, StableDiffusionXLPipeline):
            pipe.vae.to(dtype=torch.float16)
    if intermediate_latents is None:
        inverted_latents = invert(
            pipe, l, input_image_prompt, num_inference_steps=num_steps
        )
    else:
        inverted_latents = intermediate_latents

    attn_injection.register_attention_processors(
        pipe,
        base_dir=output_dir,
        resnet_mode=resnet_mode,
        attn_mode="artist" if disentangle else "pnp",
        disentangle=disentangle,
        share_resblock=True,
        share_attn=share_attn,
        share_cross_attn=share_cross_attn,
        share_resnet_layers=share_resnet_layers,
        share_attn_layers=share_attn_layers,
        share_key=share_key,
        share_query=share_query,
        share_value=share_value,
        use_adain=use_adain,
        c2s_layers=c2s_layers,
    )

    if disentangle:
        final_im = sample_disentangled(
            pipe,
            style_prompt,
            start_latents=inverted_latents[-(start_step + 1)][None],
            intermediate_latents=inverted_latents,
            start_step=start_step,
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            use_content_anchor=use_content_anchor,
        )
    else:
        final_im = sample(
            pipe,
            style_prompt,
            start_latents=inverted_latents[-(start_step + 1)][None],
            intermediate_latents=inverted_latents,
            start_step=start_step,
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
        )

    # unset the attention processors
    attn_injection.unset_attention_processors(
        pipe,
        unset_share_attn=True,
        unset_share_resblock=True,
    )
    if return_intermediate:
        return final_im, inverted_latents
    return final_im


if __name__ == "__main__":

    # Load a pipeline
    pipe = StableDiffusionPipeline.from_pretrained(
        "stabilityai/stable-diffusion-2-1-base"
    ).to(device)

    # pipe = DiffusionPipeline.from_pretrained(
    #     # "playgroundai/playground-v2-1024px-aesthetic",
    #     torch_dtype=torch.float16,
    #     use_safetensors=True,
    #     add_watermarker=False,
    #     variant="fp16",
    # )
    # pipe.to("cuda")

    # Set up a DDIM scheduler
    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

    parser = argparse.ArgumentParser(description="Stable Diffusion with OmegaConf")
    parser.add_argument(
        "--config", type=str, default="config.yaml", help="Path to the config file"
    )
    parser.add_argument(
        "--mode",
        type=str,
        default="dataset",
        choices=["dataset", "cli", "app"],
        help="Path to the config file",
    )
    parser.add_argument(
        "--image_dir", type=str, default="test.png", help="Path to the image"
    )
    parser.add_argument(
        "--prompt",
        type=str,
        default="an impressionist painting",
        help="Stylization prompt",
    )
    # mode = "single_control_content"
    args = parser.parse_args()
    config_dir = args.config
    mode = args.mode
    # mode = "dataset"
    out_name = ["content_delegation", "style_delegation", "style_out"]

    if mode == "dataset":
        cfg = OmegaConf.load(config_dir)

        base_output_path = cfg.out_path
        if not os.path.exists(cfg.out_path):
            os.makedirs(cfg.out_path)
        base_output_path = os.path.join(base_output_path, cfg.exp_name)

        experiment_output_path = utils.exp_utils.make_unique_experiment_path(
            base_output_path
        )

        # Save the experiment configuration
        config_file_path = os.path.join(experiment_output_path, "config.yaml")
        omegaconf.OmegaConf.save(cfg, config_file_path)

        # Seed all

        annotation = json.load(open(cfg.annotation))
        with open(os.path.join(experiment_output_path, "annotation.json"), "w") as f:
            json.dump(annotation, f)
        for i, entry in enumerate(annotation):
            utils.exp_utils.seed_all(cfg.seed)
            image_path = entry["image_path"]
            src_prompt = entry["source_prompt"]
            tgt_prompt = entry["target_prompt"]
            resolution = 512 if isinstance(pipe, StableDiffusionXLPipeline) else 512
            input_image = utils.exp_utils.get_processed_image(
                image_path, device, resolution
            )

            prompt_in = [
                src_prompt,  # reconstruction
                tgt_prompt,  # uncontrolled style
                "",  # controlled style
            ]

            imgs = style_image_with_inversion(
                pipe,
                input_image,
                src_prompt,
                style_prompt=prompt_in,
                num_steps=cfg.num_steps,
                start_step=cfg.start_step,
                guidance_scale=cfg.style_cfg_scale,
                disentangle=cfg.disentangle,
                resnet_mode=cfg.resnet_mode,
                share_attn=cfg.share_attn,
                share_cross_attn=cfg.share_cross_attn,
                share_resnet_layers=cfg.share_resnet_layers,
                share_attn_layers=cfg.share_attn_layers,
                share_key=cfg.share_key,
                share_query=cfg.share_query,
                share_value=cfg.share_value,
                use_content_anchor=cfg.use_content_anchor,
                use_adain=cfg.use_adain,
                output_dir=experiment_output_path,
            )

            for j, img in enumerate(imgs):
                img.save(f"{experiment_output_path}/out_{i}_{out_name[j]}.png")
                print(
                    f"Image saved as {experiment_output_path}/out_{i}_{out_name[j]}.png"
                )
    elif mode == "cli":
        cfg = OmegaConf.load(config_dir)
        utils.exp_utils.seed_all(cfg.seed)
        image = utils.exp_utils.get_processed_image(args.image_dir, device, 512)
        tgt_prompt = args.prompt
        src_prompt = ""
        prompt_in = [
            "",  # reconstruction
            tgt_prompt,  # uncontrolled style
            "",  # controlled style
        ]
        out_dir = "./out"
        os.makedirs(out_dir, exist_ok=True)
        imgs = style_image_with_inversion(
            pipe,
            image,
            src_prompt,
            style_prompt=prompt_in,
            num_steps=cfg.num_steps,
            start_step=cfg.start_step,
            guidance_scale=cfg.style_cfg_scale,
            disentangle=cfg.disentangle,
            resnet_mode=cfg.resnet_mode,
            share_attn=cfg.share_attn,
            share_cross_attn=cfg.share_cross_attn,
            share_resnet_layers=cfg.share_resnet_layers,
            share_attn_layers=cfg.share_attn_layers,
            share_key=cfg.share_key,
            share_query=cfg.share_query,
            share_value=cfg.share_value,
            use_content_anchor=cfg.use_content_anchor,
            use_adain=cfg.use_adain,
            output_dir=out_dir,
        )
        image_base_name = os.path.basename(args.image_dir).split(".")[0]
        for j, img in enumerate(imgs):
            img.save(f"{out_dir}/{image_base_name}_out_{out_name[j]}.png")
            print(f"Image saved as {out_dir}/{image_base_name}_out_{out_name[j]}.png")
    elif mode == "app":
        # gradio
        import gradio as gr

        def style_transfer_app(
            prompt,
            image,
            cfg_scale=7.5,
            num_content_layers=4,
            num_style_layers=9,
            seed=0,
            progress=gr.Progress(track_tqdm=True),
        ):
            utils.exp_utils.seed_all(seed)
            image = utils.exp_utils.process_image(image, device, 512)

            tgt_prompt = prompt
            src_prompt = ""
            prompt_in = [
                "",  # reconstruction
                tgt_prompt,  # uncontrolled style
                "",  # controlled style
            ]

            share_resnet_layers = (
                list(range(num_content_layers)) if num_content_layers != 0 else None
            )
            share_attn_layers = (
                list(range(num_style_layers)) if num_style_layers != 0 else None
            )
            imgs = style_image_with_inversion(
                pipe,
                image,
                src_prompt,
                style_prompt=prompt_in,
                num_steps=50,
                start_step=0,
                guidance_scale=cfg_scale,
                disentangle=True,
                resnet_mode="hidden",
                share_attn=True,
                share_cross_attn=True,
                share_resnet_layers=share_resnet_layers,
                share_attn_layers=share_attn_layers,
                share_key=True,
                share_query=True,
                share_value=False,
                use_content_anchor=True,
                use_adain=True,
                output_dir="./",
            )

            return imgs[2]

        # load examples
        examples = []
        annotation = json.load(open("data/example/annotation.json"))
        for entry in annotation:
            image = utils.exp_utils.get_processed_image(
                entry["image_path"], device, 512
            )
            image = transforms.ToPILImage()(image[0])

            examples.append([entry["target_prompt"], image, None, None, None])

        text_input = gr.Textbox(
            value="An impressionist painting",
            label="Text Prompt",
            info="Describe the style you want to apply to the image, do not include the description of the image content itself",
            lines=2,
            placeholder="Enter a text prompt",
        )
        image_input = gr.Image(
            height="80%",
            width="80%",
            label="Content image (will be resized to 512x512)",
            interactive=True,
        )
        cfg_slider = gr.Slider(
            0,
            15,
            value=7.5,
            label="Classifier Free Guidance (CFG) Scale",
            info="higher values give more style, 7.5 should be good for most cases",
        )
        content_slider = gr.Slider(
            0,
            9,
            value=4,
            step=1,
            label="Number of content control layer",
            info="higher values make it more similar to original image. Default to control first 4 layers",
        )
        style_slider = gr.Slider(
            0,
            9,
            value=9,
            step=1,
            label="Number of style control layer",
            info="higher values make it more similar to target style. Default to control first 9 layers, usually not necessary to change.",
        )
        seed_slider = gr.Slider(
            0,
            100,
            value=0,
            step=1,
            label="Seed",
            info="Random seed for the model",
        )
        app = gr.Interface(
            fn=style_transfer_app,
            inputs=[
                text_input,
                image_input,
                cfg_slider,
                content_slider,
                style_slider,
                seed_slider,
            ],
            outputs=["image"],
            title="Artist Interactive Demo",
            examples=examples,
        )
        app.launch()