Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,225 Bytes
e02c605 540c169 e02c605 540c169 e02c605 540c169 e02c605 540c169 e02c605 a107891 cf5026f e02c605 cf5026f e02c605 cf5026f e02c605 5b23773 2db1c3e 5b14616 08c7296 a7c772e e02c605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
# %%
import argparse, os
import torch
import requests
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from io import BytesIO
from tqdm.auto import tqdm
from matplotlib import pyplot as plt
from torchvision import transforms as tfms
from diffusers import (
StableDiffusionPipeline,
DDIMScheduler,
DiffusionPipeline,
StableDiffusionXLPipeline,
)
from diffusers.image_processor import VaeImageProcessor
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import save_image
import argparse
import PIL.Image as Image
from torchvision.utils import make_grid
import numpy
from diffusers.schedulers import DDIMScheduler
import torch.nn.functional as F
from models import attn_injection
from omegaconf import OmegaConf
from typing import List, Tuple
import omegaconf
import utils.exp_utils
import json
device = torch.device("cuda")
def _get_text_embeddings(prompt: str, tokenizer, text_encoder, device):
# Tokenize text and get embeddings
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
with torch.no_grad():
prompt_embeds = text_encoder(
text_input_ids.to(device),
output_hidden_states=True,
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
if prompt == "":
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
return negative_prompt_embeds, negative_pooled_prompt_embeds
return prompt_embeds, pooled_prompt_embeds
def _encode_text_sdxl(model: StableDiffusionXLPipeline, prompt: str):
device = model._execution_device
(
prompt_embeds,
pooled_prompt_embeds,
) = _get_text_embeddings(prompt, model.tokenizer, model.text_encoder, device)
(
prompt_embeds_2,
pooled_prompt_embeds_2,
) = _get_text_embeddings(prompt, model.tokenizer_2, model.text_encoder_2, device)
prompt_embeds = torch.cat((prompt_embeds, prompt_embeds_2), dim=-1)
text_encoder_projection_dim = model.text_encoder_2.config.projection_dim
add_time_ids = model._get_add_time_ids(
(1024, 1024), (0, 0), (1024, 1024), torch.float16, text_encoder_projection_dim
).to(device)
# repeat the time ids for each prompt
add_time_ids = add_time_ids.repeat(len(prompt), 1)
added_cond_kwargs = {
"text_embeds": pooled_prompt_embeds_2,
"time_ids": add_time_ids,
}
return added_cond_kwargs, prompt_embeds
def _encode_text_sdxl_with_negative(
model: StableDiffusionXLPipeline, prompt: List[str]
):
B = len(prompt)
added_cond_kwargs, prompt_embeds = _encode_text_sdxl(model, prompt)
added_cond_kwargs_uncond, prompt_embeds_uncond = _encode_text_sdxl(
model, ["" for _ in range(B)]
)
prompt_embeds = torch.cat(
(
prompt_embeds_uncond,
prompt_embeds,
)
)
added_cond_kwargs = {
"text_embeds": torch.cat(
(added_cond_kwargs_uncond["text_embeds"], added_cond_kwargs["text_embeds"])
),
"time_ids": torch.cat(
(added_cond_kwargs_uncond["time_ids"], added_cond_kwargs["time_ids"])
),
}
return added_cond_kwargs, prompt_embeds
# Sample function (regular DDIM)
@torch.no_grad()
def sample(
pipe,
prompt,
start_step=0,
start_latents=None,
intermediate_latents=None,
guidance_scale=3.5,
num_inference_steps=30,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="",
device=device,
):
negative_prompt = [""] * len(prompt)
# Encode prompt
if isinstance(pipe, StableDiffusionPipeline):
text_embeddings = pipe._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
)
added_cond_kwargs = None
elif isinstance(pipe, StableDiffusionXLPipeline):
added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
pipe, prompt
)
# Set num inference steps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
# Create a random starting point if we don't have one already
if start_latents is None:
start_latents = torch.randn(1, 4, 64, 64, device=device)
start_latents *= pipe.scheduler.init_noise_sigma
latents = start_latents.clone()
latents = latents.repeat(len(prompt), 1, 1, 1)
# assume that the first latent is used for reconstruction
for i in tqdm(range(start_step, num_inference_steps)):
latents[0] = intermediate_latents[(-i + 1)]
t = pipe.scheduler.timesteps[i]
# Expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
# Predict the noise residual
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs,
).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
# Post-processing
images = pipe.decode_latents(latents)
images = pipe.numpy_to_pil(images)
return images
# Sample function (regular DDIM), but disentangle the content and style
@torch.no_grad()
def sample_disentangled(
pipe,
prompt,
start_step=0,
start_latents=None,
intermediate_latents=None,
guidance_scale=3.5,
num_inference_steps=30,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
use_content_anchor=True,
negative_prompt="",
device=device,
):
negative_prompt = [""] * len(prompt)
vae_decoder = VaeImageProcessor(vae_scale_factor=pipe.vae.config.scaling_factor)
# Encode prompt
if isinstance(pipe, StableDiffusionPipeline):
text_embeddings = pipe._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
)
added_cond_kwargs = None
elif isinstance(pipe, StableDiffusionXLPipeline):
added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
pipe, prompt
)
# Set num inference steps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
# save
latent_shape = (
(1, 4, 64, 64) if isinstance(pipe, StableDiffusionPipeline) else (1, 4, 64, 64)
)
generative_latent = torch.randn(latent_shape, device=device)
generative_latent *= pipe.scheduler.init_noise_sigma
latents = start_latents.clone()
latents = latents.repeat(len(prompt), 1, 1, 1)
# randomly initialize the 1st latent for generation
latents[1] = generative_latent
# assume that the first latent is used for reconstruction
for i in range(start_step, num_inference_steps):
if use_content_anchor:
latents[0] = intermediate_latents[-(i + 1)]
t = pipe.scheduler.timesteps[i]
# Expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
# Predict the noise residual
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs,
).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
# Post-processing
# images = vae_decoder.postprocess(latents)
pipe.vae.to(dtype=torch.float32)
latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
latents = 1 / pipe.vae.config.scaling_factor * latents
images = pipe.vae.decode(latents, return_dict=False)[0]
images = (images / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
images = pipe.numpy_to_pil(images)
if isinstance(pipe, StableDiffusionXLPipeline):
pipe.vae.to(dtype=torch.float16)
return images
## Inversion
@torch.no_grad()
def invert(
pipe,
start_latents,
prompt,
guidance_scale=3.5,
num_inference_steps=50,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="",
device=device,
):
# Encode prompt
if isinstance(pipe, StableDiffusionPipeline):
text_embeddings = pipe._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
)
added_cond_kwargs = None
latents = start_latents.clone().detach()
elif isinstance(pipe, StableDiffusionXLPipeline):
added_cond_kwargs, text_embeddings = _encode_text_sdxl_with_negative(
pipe, [prompt]
) # Latents are now the specified start latents
latents = start_latents.clone().detach().half()
# We'll keep a list of the inverted latents as the process goes on
intermediate_latents = []
# Set num inference steps
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
# Reversed timesteps <<<<<<<<<<<<<<<<<<<<
timesteps = list(reversed(pipe.scheduler.timesteps))
for i in range(num_inference_steps):
if i >= num_inference_steps - 1:
continue
t = timesteps[i]
# Expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
# Predict the noise residual
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs,
).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
current_t = max(0, t.item() - (1000 // num_inference_steps)) # t
next_t = t # min(999, t.item() + (1000 // num_inference_steps)) # t+1
alpha_t = pipe.scheduler.alphas_cumprod[current_t]
alpha_t_next = pipe.scheduler.alphas_cumprod[next_t]
# Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (
alpha_t_next.sqrt() / alpha_t.sqrt()
) + (1 - alpha_t_next).sqrt() * noise_pred
# Store
intermediate_latents.append(latents)
return torch.cat(intermediate_latents)
def style_image_with_inversion(
pipe,
input_image,
input_image_prompt,
style_prompt,
num_steps=100,
start_step=30,
guidance_scale=3.5,
disentangle=False,
share_attn=False,
share_cross_attn=False,
share_resnet_layers=[0, 1],
share_attn_layers=[],
c2s_layers=[0, 1],
share_key=True,
share_query=True,
share_value=False,
use_adain=True,
use_content_anchor=True,
output_dir: str = None,
resnet_mode: str = None,
return_intermediate=False,
intermediate_latents=None,
):
with torch.no_grad():
pipe.vae.to(dtype=torch.float32)
latent = pipe.vae.encode(input_image.to(device) * 2 - 1)
# latent = pipe.vae.encode(input_image.to(device))
l = pipe.vae.config.scaling_factor * latent.latent_dist.sample()
if isinstance(pipe, StableDiffusionXLPipeline):
pipe.vae.to(dtype=torch.float16)
if intermediate_latents is None:
inverted_latents = invert(
pipe, l, input_image_prompt, num_inference_steps=num_steps
)
else:
inverted_latents = intermediate_latents
attn_injection.register_attention_processors(
pipe,
base_dir=output_dir,
resnet_mode=resnet_mode,
attn_mode="artist" if disentangle else "pnp",
disentangle=disentangle,
share_resblock=True,
share_attn=share_attn,
share_cross_attn=share_cross_attn,
share_resnet_layers=share_resnet_layers,
share_attn_layers=share_attn_layers,
share_key=share_key,
share_query=share_query,
share_value=share_value,
use_adain=use_adain,
c2s_layers=c2s_layers,
)
if disentangle:
final_im = sample_disentangled(
pipe,
style_prompt,
start_latents=inverted_latents[-(start_step + 1)][None],
intermediate_latents=inverted_latents,
start_step=start_step,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
use_content_anchor=use_content_anchor,
)
else:
final_im = sample(
pipe,
style_prompt,
start_latents=inverted_latents[-(start_step + 1)][None],
intermediate_latents=inverted_latents,
start_step=start_step,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
)
# unset the attention processors
attn_injection.unset_attention_processors(
pipe,
unset_share_attn=True,
unset_share_resblock=True,
)
if return_intermediate:
return final_im, inverted_latents
return final_im
if __name__ == "__main__":
# Load a pipeline
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base"
).to(device)
# pipe = DiffusionPipeline.from_pretrained(
# # "playgroundai/playground-v2-1024px-aesthetic",
# torch_dtype=torch.float16,
# use_safetensors=True,
# add_watermarker=False,
# variant="fp16",
# )
# pipe.to("cuda")
# Set up a DDIM scheduler
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
parser = argparse.ArgumentParser(description="Stable Diffusion with OmegaConf")
parser.add_argument(
"--config", type=str, default="config.yaml", help="Path to the config file"
)
parser.add_argument(
"--mode",
type=str,
default="dataset",
choices=["dataset", "cli", "app"],
help="Path to the config file",
)
parser.add_argument(
"--image_dir", type=str, default="test.png", help="Path to the image"
)
parser.add_argument(
"--prompt",
type=str,
default="an impressionist painting",
help="Stylization prompt",
)
# mode = "single_control_content"
args = parser.parse_args()
config_dir = args.config
mode = args.mode
# mode = "dataset"
out_name = ["content_delegation", "style_delegation", "style_out"]
if mode == "dataset":
cfg = OmegaConf.load(config_dir)
base_output_path = cfg.out_path
if not os.path.exists(cfg.out_path):
os.makedirs(cfg.out_path)
base_output_path = os.path.join(base_output_path, cfg.exp_name)
experiment_output_path = utils.exp_utils.make_unique_experiment_path(
base_output_path
)
# Save the experiment configuration
config_file_path = os.path.join(experiment_output_path, "config.yaml")
omegaconf.OmegaConf.save(cfg, config_file_path)
# Seed all
annotation = json.load(open(cfg.annotation))
with open(os.path.join(experiment_output_path, "annotation.json"), "w") as f:
json.dump(annotation, f)
for i, entry in enumerate(annotation):
utils.exp_utils.seed_all(cfg.seed)
image_path = entry["image_path"]
src_prompt = entry["source_prompt"]
tgt_prompt = entry["target_prompt"]
resolution = 512 if isinstance(pipe, StableDiffusionXLPipeline) else 512
input_image = utils.exp_utils.get_processed_image(
image_path, device, resolution
)
prompt_in = [
src_prompt, # reconstruction
tgt_prompt, # uncontrolled style
"", # controlled style
]
imgs = style_image_with_inversion(
pipe,
input_image,
src_prompt,
style_prompt=prompt_in,
num_steps=cfg.num_steps,
start_step=cfg.start_step,
guidance_scale=cfg.style_cfg_scale,
disentangle=cfg.disentangle,
resnet_mode=cfg.resnet_mode,
share_attn=cfg.share_attn,
share_cross_attn=cfg.share_cross_attn,
share_resnet_layers=cfg.share_resnet_layers,
share_attn_layers=cfg.share_attn_layers,
share_key=cfg.share_key,
share_query=cfg.share_query,
share_value=cfg.share_value,
use_content_anchor=cfg.use_content_anchor,
use_adain=cfg.use_adain,
output_dir=experiment_output_path,
)
for j, img in enumerate(imgs):
img.save(f"{experiment_output_path}/out_{i}_{out_name[j]}.png")
print(
f"Image saved as {experiment_output_path}/out_{i}_{out_name[j]}.png"
)
elif mode == "cli":
cfg = OmegaConf.load(config_dir)
utils.exp_utils.seed_all(cfg.seed)
image = utils.exp_utils.get_processed_image(args.image_dir, device, 512)
tgt_prompt = args.prompt
src_prompt = ""
prompt_in = [
"", # reconstruction
tgt_prompt, # uncontrolled style
"", # controlled style
]
out_dir = "./out"
os.makedirs(out_dir, exist_ok=True)
imgs = style_image_with_inversion(
pipe,
image,
src_prompt,
style_prompt=prompt_in,
num_steps=cfg.num_steps,
start_step=cfg.start_step,
guidance_scale=cfg.style_cfg_scale,
disentangle=cfg.disentangle,
resnet_mode=cfg.resnet_mode,
share_attn=cfg.share_attn,
share_cross_attn=cfg.share_cross_attn,
share_resnet_layers=cfg.share_resnet_layers,
share_attn_layers=cfg.share_attn_layers,
share_key=cfg.share_key,
share_query=cfg.share_query,
share_value=cfg.share_value,
use_content_anchor=cfg.use_content_anchor,
use_adain=cfg.use_adain,
output_dir=out_dir,
)
image_base_name = os.path.basename(args.image_dir).split(".")[0]
for j, img in enumerate(imgs):
img.save(f"{out_dir}/{image_base_name}_out_{out_name[j]}.png")
print(f"Image saved as {out_dir}/{image_base_name}_out_{out_name[j]}.png")
elif mode == "app":
# gradio
import gradio as gr
def style_transfer_app(
prompt,
image,
cfg_scale=7.5,
num_content_layers=4,
num_style_layers=9,
seed=0,
progress=gr.Progress(track_tqdm=True),
):
utils.exp_utils.seed_all(seed)
image = utils.exp_utils.process_image(image, device, 512)
tgt_prompt = prompt
src_prompt = ""
prompt_in = [
"", # reconstruction
tgt_prompt, # uncontrolled style
"", # controlled style
]
share_resnet_layers = (
list(range(num_content_layers)) if num_content_layers != 0 else None
)
share_attn_layers = (
list(range(num_style_layers)) if num_style_layers != 0 else None
)
imgs = style_image_with_inversion(
pipe,
image,
src_prompt,
style_prompt=prompt_in,
num_steps=50,
start_step=0,
guidance_scale=cfg_scale,
disentangle=True,
resnet_mode="hidden",
share_attn=True,
share_cross_attn=True,
share_resnet_layers=share_resnet_layers,
share_attn_layers=share_attn_layers,
share_key=True,
share_query=True,
share_value=False,
use_content_anchor=True,
use_adain=True,
output_dir="./",
)
return imgs[2]
# load examples
examples = []
annotation = json.load(open("data/example/annotation.json"))
for entry in annotation:
image = utils.exp_utils.get_processed_image(
entry["image_path"], device, 512
)
image = transforms.ToPILImage()(image[0])
examples.append([entry["target_prompt"], image, None, None, None])
text_input = gr.Textbox(
value="An impressionist painting",
label="Text Prompt",
info="Describe the style you want to apply to the image, do not include the description of the image content itself",
lines=2,
placeholder="Enter a text prompt",
)
image_input = gr.Image(
height="80%",
width="80%",
label="Content image (will be resized to 512x512)",
interactive=True,
)
cfg_slider = gr.Slider(
0,
15,
value=7.5,
label="Classifier Free Guidance (CFG) Scale",
info="higher values give more style, 7.5 should be good for most cases",
)
content_slider = gr.Slider(
0,
9,
value=4,
step=1,
label="Number of content control layer",
info="higher values make it more similar to original image. Default to control first 4 layers",
)
style_slider = gr.Slider(
0,
9,
value=9,
step=1,
label="Number of style control layer",
info="higher values make it more similar to target style. Default to control first 9 layers, usually not necessary to change.",
)
seed_slider = gr.Slider(
0,
100,
value=0,
step=1,
label="Seed",
info="Random seed for the model",
)
app = gr.Interface(
fn=style_transfer_app,
inputs=[
text_input,
image_input,
cfg_slider,
content_slider,
style_slider,
seed_slider,
],
outputs=["image"],
title="Artist Interactive Demo",
examples=examples,
)
app.launch()
|