DimensionX / app.py
fffiloni's picture
Update app.py
9dab6c2 verified
raw
history blame
3.93 kB
import gradio as gr
import os
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer
from datetime import datetime
from huggingface_hub import hf_hub_download
# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_left_lora_weights.safetensors",
local_dir="checkpoints"
)
hf_hub_download(
repo_id="wenqsun/DimensionX",
filename="orbit_up_lora_weights.safetensors",
local_dir="checkpoints"
)
model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
lora_path = "your lora path"
lora_rank = 256
def infer(prompt, image_path, orbit_type, progress=gr.Progress(track_tqdm=True)):
lora_path = "checkpoints/"
adapter_name = None
if orbit_type == "Left":
weight_name = "orbit_left_lora_weights.safetensors"
adapter_name = "orbit_left_lora_weights"
elif orbit_type == "Up":
weight_name = "orbit_up_lora_weights.safetensors"
adapter_name = "orbit_up_lora_weights"
lora_rank = 256
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name="test_1")
pipe.fuse_lora(lora_scale=1 / lora_rank)
pipe.to("cuda")
prompt = f"A{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
image = load_image(image_path)
seed = random.randint(0, 2**8 - 1)
video = pipe_image(
image,
prompt,
num_inference_steps=50, # NOT Changed
guidance_scale=7.0, # NOT Changed
use_dynamic_cfg=True,
generator=torch.Generator(device="cpu").manual_seed(seed)
)
# Generate a timestamp for the output filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
return f"output_{timestamp}.mp4"
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# DimensionX")
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Image Input", type="filepath")
prompt = gr.Textbox(label="Prompt")
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left")
submit_btn = gr.Button("Submit")
with gr.Column():
video_out = gr.Video(label="Video output")
examples = gr.Examples(
examples = [
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
"Left"
]
],
inputs=[image_in, prompt, orbit_type]
)
submit_btn.click(
fn=infer,
inputs=[image_in, prompt, orbit_type],
outputs=[video_out]
)
demo.queue().launch(show_error=True, show_api=False)