Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
-
from diffusers import
|
5 |
from diffusers.utils import export_to_video, load_image
|
6 |
from datetime import datetime
|
7 |
|
@@ -22,20 +22,9 @@ hf_hub_download(
|
|
22 |
local_dir="checkpoints"
|
23 |
)
|
24 |
|
25 |
-
pipe =
|
26 |
-
|
27 |
-
|
28 |
-
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
29 |
-
"THUDM/CogVideoX-5b-I2V",
|
30 |
-
transformer=CogVideoXTransformer3DModel.from_pretrained(
|
31 |
-
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
32 |
-
),
|
33 |
-
vae=pipe.vae,
|
34 |
-
scheduler=pipe.scheduler,
|
35 |
-
tokenizer=pipe.tokenizer,
|
36 |
-
text_encoder=pipe.text_encoder,
|
37 |
-
torch_dtype=torch.bfloat16,
|
38 |
-
)
|
39 |
def infer(prompt, image_path, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
40 |
lora_path = "checkpoints/"
|
41 |
if orbit_type == "Left":
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import torch
|
4 |
+
from diffusers import CogVideoXImageToVideoPipeline
|
5 |
from diffusers.utils import export_to_video, load_image
|
6 |
from datetime import datetime
|
7 |
|
|
|
22 |
local_dir="checkpoints"
|
23 |
)
|
24 |
|
25 |
+
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16)
|
26 |
+
lora_path = "your lora path"
|
27 |
+
lora_rank = 256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def infer(prompt, image_path, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
29 |
lora_path = "checkpoints/"
|
30 |
if orbit_type == "Left":
|