import gradio as gr import os import torch from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel from diffusers.utils import export_to_video, load_image from transformers import T5EncoderModel, T5Tokenizer from datetime import datetime from huggingface_hub import hf_hub_download # Ensure 'checkpoint' directory exists os.makedirs("checkpoints", exist_ok=True) hf_hub_download( repo_id="wenqsun/DimensionX", filename="orbit_left_lora_weights.safetensors", local_dir="checkpoints" ) hf_hub_download( repo_id="wenqsun/DimensionX", filename="orbit_up_lora_weights.safetensors", local_dir="checkpoints" ) model_id = "THUDM/CogVideoX-5b-I2V" transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16) text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16) vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16) tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer") pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16) lora_path = "your lora path" lora_rank = 256 def infer(prompt, image_path, orbit_type, progress=gr.Progress(track_tqdm=True)): lora_path = "checkpoints/" adapter_name = None if orbit_type == "Left": weight_name = "orbit_left_lora_weights.safetensors" adapter_name = "orbit_left_lora_weights" elif orbit_type == "Up": weight_name = "orbit_up_lora_weights.safetensors" adapter_name = "orbit_up_lora_weights" lora_rank = 256 pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name="test_1") pipe.fuse_lora(lora_scale=1 / lora_rank) pipe.to("cuda") prompt = f"A{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot." image = load_image(image_path) seed = random.randint(0, 2**8 - 1) video = pipe_image( image, prompt, num_inference_steps=50, # NOT Changed guidance_scale=7.0, # NOT Changed use_dynamic_cfg=True, generator=torch.Generator(device="cpu").manual_seed(seed) ) # Generate a timestamp for the output filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8) return f"output_{timestamp}.mp4" with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# DimensionX") gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion") with gr.Row(): with gr.Column(): image_in = gr.Image(label="Image Input", type="filepath") prompt = gr.Textbox(label="Prompt") orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left") submit_btn = gr.Button("Submit") with gr.Column(): video_out = gr.Video(label="Video output") examples = gr.Examples( examples = [ [ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg", "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.", "Left" ] ], inputs=[image_in, prompt, orbit_type] ) submit_btn.click( fn=infer, inputs=[image_in, prompt, orbit_type], outputs=[video_out] ) demo.queue().launch(show_error=True, show_api=False)