Spaces:
Paused
Paused
File size: 2,828 Bytes
6b14aab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, visit
// https://nvlabs.github.io/stylegan2/license.html
#include <torch/types.h>
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
template <typename scalar_t>
static __global__ void
fused_bias_act_kernel(scalar_t *out, const scalar_t *p_x, const scalar_t *p_b,
const scalar_t *p_ref, int act, int grad, scalar_t alpha,
scalar_t scale, int loop_x, int size_x, int step_b,
int size_b, int use_bias, int use_ref) {
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
scalar_t zero = 0.0;
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x;
loop_idx++, xi += blockDim.x) {
scalar_t x = p_x[xi];
if (use_bias) {
x += p_b[(xi / step_b) % size_b];
}
scalar_t ref = use_ref ? p_ref[xi] : zero;
scalar_t y;
switch (act * 10 + grad) {
default:
case 10:
y = x;
break;
case 11:
y = x;
break;
case 12:
y = 0.0;
break;
case 30:
y = (x > 0.0) ? x : x * alpha;
break;
case 31:
y = (ref > 0.0) ? x : x * alpha;
break;
case 32:
y = 0.0;
break;
}
out[xi] = y * scale;
}
}
torch::Tensor fused_bias_act_op(const torch::Tensor &input,
const torch::Tensor &bias,
const torch::Tensor &refer, int act, int grad,
float alpha, float scale) {
int curDevice = -1;
cudaGetDevice(&curDevice);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto x = input.contiguous();
auto b = bias.contiguous();
auto ref = refer.contiguous();
int use_bias = b.numel() ? 1 : 0;
int use_ref = ref.numel() ? 1 : 0;
int size_x = x.numel();
int size_b = b.numel();
int step_b = 1;
for (int i = 1 + 1; i < x.dim(); i++) {
step_b *= x.size(i);
}
int loop_x = 4;
int block_size = 4 * 32;
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
auto y = torch::empty_like(x);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
x.scalar_type(), "fused_bias_act_kernel", [&] {
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
y.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
b.data_ptr<scalar_t>(), ref.data_ptr<scalar_t>(), act, grad, alpha,
scale, loop_x, size_x, step_b, size_b, use_bias, use_ref);
});
return y;
} |