Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,105 Bytes
03a856a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from dataclasses import dataclass
from typing import Optional
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from torch import nn
from .attention import TemporalBasicTransformerBlock
@dataclass
class Transformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class Transformer3DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
upcast_attention: bool = False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
TemporalBasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states,
encoder_hidden_states=None,
audio_cond_fea=None,
timestep=None,
return_dict: bool = True,
):
# Input
assert (
hidden_states.dim() == 5
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
if audio_cond_fea.shape[0] != hidden_states.shape[0]:
if len(audio_cond_fea.shape) == 3:
audio_cond_fea = rearrange(
audio_cond_fea, "b f c -> (b f) 1 c"
)
elif len(audio_cond_fea.shape) == 4:
audio_cond_fea = rearrange(
audio_cond_fea, "b f n c -> (b f) n c"
)
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * weight, inner_dim
)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * weight, inner_dim
)
hidden_states = self.proj_in(hidden_states)
# Blocks
for i, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
audio_cond_fea=audio_cond_fea,
timestep=timestep,
video_length=video_length,
)
# Output
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
if not return_dict:
return (output,)
return Transformer3DModelOutput(sample=output)
|