EchoMimic / src /pipelines /pipeline_echo_mimic.py
fffiloni's picture
Upload 184 files
03a856a verified
raw
history blame
21.9 kB
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Project :EchoMimic
@File :pipeline_echo_mimic.py
@Author :juzhen.czy
@Date :2024/3/4 17:44
'''
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/pipelines/pipeline_animation.py
import inspect
import math
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from diffusers import DiffusionPipeline
import torch.nn.functional as F
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from tqdm import tqdm
from transformers import CLIPImageProcessor
from src.models.mutual_self_attention import ReferenceAttentionControl
from src.pipelines.context import get_context_scheduler
from src.pipelines.utils import get_tensor_interpolation_method
@dataclass
class Audio2VideoPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
class Audio2VideoPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae,
reference_unet,
denoising_unet,
audio_guider,
face_locator,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
image_proj_model=None,
tokenizer=None,
text_encoder=None,
):
super().__init__()
self.register_modules(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_guider,
face_locator=face_locator,
scheduler=scheduler,
image_proj_model=image_proj_model,
tokenizer=tokenizer,
text_encoder=text_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.clip_image_processor = CLIPImageProcessor()
self.ref_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
)
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = []
for frame_idx in tqdm(range(latents.shape[0])):
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(
self,
batch_size,
num_channels_latents,
width,
height,
video_length,
dtype,
device,
generator
):
shape = (
batch_size,
num_channels_latents,
# context_frame_length,
video_length,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents_seg = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
latents = latents_seg
latents = torch.clamp(latents, -1.5, 1.5)
latents = latents * self.scheduler.init_noise_sigma
return latents
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
negative_prompt,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
text_embeddings = text_embeddings.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(
batch_size * num_videos_per_prompt, seq_len, -1
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def interpolate_latents(
self, latents: torch.Tensor, interpolation_factor: int, device
):
if interpolation_factor < 2:
return latents
new_latents = torch.zeros(
(
latents.shape[0],
latents.shape[1],
((latents.shape[2] - 1) * interpolation_factor) + 1,
latents.shape[3],
latents.shape[4],
),
device=latents.device,
dtype=latents.dtype,
)
org_video_length = latents.shape[2]
rate = [i / interpolation_factor for i in range(interpolation_factor)][1:]
new_index = 0
v0 = None
v1 = None
for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]):
v0 = latents[:, :, i0, :, :]
v1 = latents[:, :, i1, :, :]
new_latents[:, :, new_index, :, :] = v0
new_index += 1
for f in rate:
v = get_tensor_interpolation_method()(
v0.to(device=device), v1.to(device=device), f
)
new_latents[:, :, new_index, :, :] = v.to(latents.device)
new_index += 1
new_latents[:, :, new_index, :, :] = v1
new_index += 1
return new_latents
@torch.no_grad()
def __call__(
self,
ref_image,
audio_path,
face_mask_tensor,
width,
height,
video_length,
num_inference_steps,
guidance_scale,
num_images_per_prompt=1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
context_schedule="uniform",
context_frames=12,
context_stride=1,
context_overlap=0,
context_batch_size=1,
interpolation_factor=1,
audio_sample_rate=16000,
fps=25,
audio_margin=2,
**kwargs,
):
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
batch_size = 1
reference_control_writer = ReferenceAttentionControl(
self.reference_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="write",
batch_size=batch_size,
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
self.denoising_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="read",
batch_size=batch_size,
fusion_blocks="full",
)
whisper_feature = self.audio_guider.audio2feat(audio_path)
whisper_chunks = self.audio_guider.feature2chunks(feature_array=whisper_feature, fps=fps)
print("whisper_chunks:", whisper_chunks.shape)
audio_frame_num = whisper_chunks.shape[0]
audio_fea_final = torch.Tensor(whisper_chunks).to(dtype=self.vae.dtype, device=self.vae.device)
audio_fea_final = audio_fea_final.unsqueeze(0)
print("audio_fea_final:", audio_fea_final.shape)
video_length = min(video_length, audio_frame_num)
if video_length < audio_frame_num:
audio_fea_final = audio_fea_final[:, :video_length, :, :]
num_channels_latents = self.denoising_unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
width,
height,
video_length,
audio_fea_final.dtype,
device,
generator
)
# print(video_length, latents.shape)
face_locator_tensor = self.face_locator(face_mask_tensor)
uc_face_locator_tensor = torch.zeros_like(face_locator_tensor)
face_locator_tensor = torch.cat([uc_face_locator_tensor, face_locator_tensor], dim=0)
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Prepare ref image latents
ref_image_tensor = self.ref_image_processor.preprocess(
ref_image, height=height, width=width
)
ref_image_tensor = ref_image_tensor.to(
dtype=self.vae.dtype, device=self.vae.device
)
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
ref_image_latents = ref_image_latents * 0.18215 # (b , 4, h, w)
context_scheduler = get_context_scheduler(context_schedule)
# denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
context_queue = list(
context_scheduler(
0,
num_inference_steps,
latents.shape[2],
context_frames,
context_stride,
context_overlap,
)
)
print("ref_image_latents shape:", ref_image_latents.shape)
print("face_mask_tensor shape:", face_mask_tensor.shape)
print("face_locator_tensor shape:", face_locator_tensor.shape)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for t_i, t in enumerate(timesteps):
noise_pred = torch.zeros(
(
latents.shape[0] * (2 if do_classifier_free_guidance else 1),
*latents.shape[1:],
),
device=latents.device,
dtype=latents.dtype,
)
counter = torch.zeros(
(1, 1, latents.shape[2], 1, 1),
device=latents.device,
dtype=latents.dtype,
)
# 1. Forward reference image
if t_i == 0:
self.reference_unet(
ref_image_latents,
torch.zeros_like(t),
encoder_hidden_states=None,
return_dict=False,
)
reference_control_reader.update(reference_control_writer, do_classifier_free_guidance=True)
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
global_context = []
for j in range(num_context_batches):
global_context.append(
context_queue[
j * context_batch_size : (j + 1) * context_batch_size
]
)
for context in global_context:
new_context = [[0 for _ in range(len(context[c_j]))] for c_j in range(len(context))]
for c_j in range(len(context)):
for c_i in range(len(context[c_j])):
new_context[c_j][c_i] = (context[c_j][c_i] + t_i * 2) % video_length
latent_model_input = (
torch.cat([latents[:, :, c] for c in new_context])
.to(device)
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
)
audio_latents = torch.cat([audio_fea_final[:, c] for c in new_context]).to(device)
audio_latents = torch.cat([torch.zeros_like(audio_latents), audio_latents], 0)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
pred = self.denoising_unet(
latent_model_input,
t,
encoder_hidden_states=None,
audio_cond_fea=audio_latents,
face_musk_fea=face_locator_tensor,
return_dict=False,
)[0]
for j, c in enumerate(new_context):
noise_pred[:, :, c] = noise_pred[:, :, c] + pred
counter[:, :, c] = counter[:, :, c] + 1
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
if t_i == len(timesteps) - 1 or (
(t_i + 1) > num_warmup_steps and (t_i + 1) % self.scheduler.order == 0
):
progress_bar.update()
reference_control_reader.clear()
reference_control_writer.clear()
if interpolation_factor > 0:
latents = self.interpolate_latents(latents, interpolation_factor, device)
# Post-processing
images = self.decode_latents(latents) # (b, c, f, h, w)
# Convert to tensor
if output_type == "tensor":
images = torch.from_numpy(images)
if not return_dict:
return images
return Audio2VideoPipelineOutput(videos=images)
def smooth_f_axis(self, tensor, smoothing_coef=0.2):
"""
对5维tensor的F轴进行平滑,首尾帧保持原始值,其他帧应用平滑操作。
参数:
tensor -- 输入的5D Tensor,形状为(B, C, F, W, H)
smoothing_coef -- 平滑前后帧的系数,默认为0.3
返回:
smoothed_tensor -- 平滑后的5D Tensor
"""
# 生成平滑核
weight_kernel = torch.tensor([smoothing_coef, 1 - 2 * smoothing_coef, smoothing_coef],
device=tensor.device, dtype=tensor.dtype).view(1, 1, -1)
b, c, f, w, h = tensor.size()
# 对于第三轴(F轴)仅平滑内部帧 (1:-1)
# 首先,移动要平滑的轴到最后一个维度以便应用conv1d
tensor_moved = rearrange(tensor, "b c f h w -> b (c h w) f")
# 对除了两端帧外的所有帧应用conv1d
internal_frames = F.conv1d(tensor_moved, weight_kernel)
print("tensor:", tensor.shape)
# 重新整理输出形状为 (B, F, C, W, H)
internal_frames = rearrange(internal_frames, "b (c h w) f -> b c f h w", c=c, h=h, w=w)
print("internal_frames:", internal_frames.shape)
# 将第一帧和最后一帧保持不变,合并结果
# 首帧 tensor[:, :, 0:1, :, :], 中间帧 internal_frames[:, :, 1:-1, :, :], 最后帧 tensor[:, :, -1:, :, :]
smoothed_tensor = torch.cat(
[tensor[:, :, 0:1, :, :], internal_frames, tensor[:, :, -1:, :, :]], dim=2)
return smoothed_tensor