Spaces:
Paused
Paused
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models import AutoencoderKL, UNet3DConditionModel | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import (deprecate, | |
logging, | |
replace_example_docstring) | |
from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput | |
from torch.nn import functional as F | |
from diffusers.models.attention_processor import Attention | |
import math | |
TAU_2 = 15 | |
TAU_1 = 10 | |
def init_attention_params(unet, num_frames, lambda_=None, bs=None): | |
for name, module in unet.named_modules(): | |
module_name = type(module).__name__ | |
if module_name == "Attention": | |
module.processor.LAMBDA = lambda_ | |
module.processor.bs = bs | |
module.processor.num_frames = num_frames | |
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, | |
is_causal=False, scale=None, enable_gqa=False, k1 = None, d_l = None) -> torch.Tensor: | |
L, S = query.size(-2), key.size(-2) | |
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale | |
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device) | |
if is_causal: | |
assert attn_mask is None | |
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) | |
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) | |
attn_bias.to(query.dtype) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
else: | |
attn_bias += attn_mask | |
if enable_gqa: | |
if k1 is not None and d_l is not None: | |
k1 = k1.repeat_interleave(query.size(-3)//k1.size(-3), -3) | |
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3) | |
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3) | |
if k1 is not None: | |
attn_k1 = query @ k1.transpose(-2, -1) | |
attn_weight = query @ key.transpose(-2, -1) | |
attn_weight[:,:len(d_l),0] = attn_k1[:,:len(d_l),0] * d_l | |
attn_weight = attn_weight * scale_factor | |
else: | |
attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
attn_weight += attn_bias | |
attn_weight = torch.softmax(attn_weight, dim=-1) | |
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
return attn_weight @ value | |
class AttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query, key, d_l, k1 = self.get_qk(query, key) | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if d_l is not None: | |
k1 = k1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
hidden_states = scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, k1 = k1, d_l = d_l | |
) | |
else: | |
hidden_states = scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
''' | |
def get_qk( | |
self, query, key): | |
r""" | |
Compute the attention scores. | |
Args: | |
query (`torch.Tensor`): The query tensor. | |
key (`torch.Tensor`): The key tensor. | |
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
Returns: | |
`torch.Tensor`: The attention probabilities/scores. | |
""" | |
q_old = query.clone() | |
k_old = key.clone() | |
dynamic_lambda = None | |
key1 = None | |
if self.use_last_attn_slice:# and self.last_attn_slice[0].shape[0] == query.shape[0]:# and query.shape[1]==self.num_frames: | |
if self.last_attn_slice is not None: | |
query_list = self.last_attn_slice[0] | |
key_list = self.last_attn_slice[1] | |
if query.shape[1] == self.num_frames and query.shape == key.shape: | |
key1 = key.clone() | |
key1[:,:1,:key_list.shape[2]] = key_list[:,:1] | |
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda() | |
if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames: | |
batch_dim = query_list.shape[0] // self.bs | |
all_dim = query.shape[0] // self.bs | |
for i in range(self.bs): | |
query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim] | |
if self.save_last_attn_slice: | |
self.last_attn_slice = [ | |
query, | |
key, | |
] | |
self.save_last_attn_slice = False | |
return query, key, dynamic_lambda, key1 | |
''' | |
def get_qk(self, query, key): | |
r""" | |
Compute the attention scores. | |
Args: | |
query (`torch.Tensor`): The query tensor. | |
key (`torch.Tensor`): The key tensor. | |
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
Returns: | |
`torch.Tensor`: The attention probabilities/scores. | |
""" | |
try: | |
q_old = query.clone() | |
k_old = key.clone() | |
dynamic_lambda = None | |
key1 = None | |
if self.use_last_attn_slice: | |
if self.last_attn_slice is not None: | |
query_list = self.last_attn_slice[0] | |
key_list = self.last_attn_slice[1] | |
# Ensure that shapes are compatible before performing assignments | |
if query.shape[1] == self.num_frames and query.shape == key.shape: | |
key1 = key.clone() | |
# Safety check: ensure key1 can receive the value from key_list without causing size mismatch | |
if key1.shape[0] >= key_list.shape[0]: | |
key1[:, :1, :key_list.shape[2]] = key_list[:, :1] | |
else: | |
raise RuntimeError(f"Shape mismatch: key1 has {key1.shape[0]} batches, but key_list has {key_list.shape[0]} batches.") | |
# Dynamic lambda scaling | |
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i / 50) for i in range(self.num_frames)]).to(key.dtype).cuda() | |
if q_old.shape == k_old.shape and q_old.shape[1] != self.num_frames: | |
# Ensure batch size division is valid | |
batch_dim = query_list.shape[0] // self.bs | |
all_dim = query.shape[0] // self.bs | |
for i in range(self.bs): | |
# Safety check for slicing indices to avoid memory access errors | |
query_slice = query[i * all_dim:(i * all_dim) + batch_dim, :query_list.shape[1], :query_list.shape[2]] | |
target_slice = query_list[i * batch_dim:(i + 1) * batch_dim] | |
# Validate dimensions match before assignment | |
if query_slice.shape == target_slice.shape: | |
query_slice[:] = target_slice | |
else: | |
raise RuntimeError(f"Shape mismatch during slicing: query slice shape {query_slice.shape}, target slice shape {target_slice.shape}") | |
if self.save_last_attn_slice: | |
self.last_attn_slice = [query, key] | |
self.save_last_attn_slice = False | |
except RuntimeError as e: | |
# If a RuntimeError happens, catch it and clean CUDA memory | |
print(f"RuntimeError occurred: {e}. Cleaning up CUDA memory...") | |
torch.cuda.empty_cache() # Free up CUDA memory to avoid further issues | |
raise # Re-raise the error to propagate it if needed | |
return query, key, dynamic_lambda, key1 | |
def init_attention_func(unet): | |
for name, module in unet.named_modules(): | |
module_name = type(module).__name__ | |
if module_name == "Attention": | |
module.set_processor(AttnProcessor2_0()) | |
module.processor.last_attn_slice = None | |
module.processor.use_last_attn_slice = False | |
module.processor.save_last_attn_slice = False | |
module.processor.LAMBDA = 0 | |
module.processor.num_frames = None | |
module.processor.bs = 0 | |
return unet | |
def use_last_self_attention(unet, use=True): | |
for name, module in unet.named_modules(): | |
module_name = type(module).__name__ | |
if module_name == "Attention" and "attn1" in name: | |
module.processor.use_last_attn_slice = use | |
def save_last_self_attention(unet, save=True): | |
for name, module in unet.named_modules(): | |
module_name = type(module).__name__ | |
if module_name == "Attention" and "attn1" in name: | |
module.processor.save_last_attn_slice = save | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import TextToVideoSDPipeline | |
>>> from diffusers.utils import export_to_video | |
>>> pipe = TextToVideoSDPipeline.from_pretrained( | |
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" | |
... ) | |
>>> pipe.enable_model_cpu_offload() | |
>>> prompt = "Spiderman is surfing" | |
>>> video_frames = pipe(prompt).frames[0] | |
>>> video_path = export_to_video(video_frames) | |
>>> video_path | |
``` | |
""" | |
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid | |
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): | |
batch_size, channels, num_frames, height, width = video.shape | |
outputs = [] | |
for batch_idx in range(batch_size): | |
batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
batch_output = processor.postprocess(batch_vid, output_type) | |
outputs.append(batch_output) | |
if output_type == "np": | |
outputs = np.stack(outputs) | |
elif output_type == "pt": | |
outputs = torch.stack(outputs) | |
elif not output_type == "pil": | |
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") | |
return outputs | |
from diffusers import TextToVideoSDPipeline | |
class TextToVideoSDPipelineModded(TextToVideoSDPipeline): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet3DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
): | |
super().__init__(vae, text_encoder, tokenizer, unet, scheduler) | |
def call_network(self, | |
negative_prompt_embeds, | |
prompt_embeds, | |
latents, | |
inv_latents, | |
t, | |
i, | |
null_embeds, | |
cross_attention_kwargs, | |
extra_step_kwargs, | |
do_classifier_free_guidance, | |
guidance_scale, | |
): | |
inv_latent_model_input = inv_latents | |
inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t) | |
latent_model_input = latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if do_classifier_free_guidance: | |
noise_pred_uncond = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=negative_prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
noise_null_pred_uncond = self.unet( | |
inv_latent_model_input, | |
t, | |
encoder_hidden_states=negative_prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
if i<=TAU_2: | |
save_last_self_attention(self.unet) | |
noise_null_pred = self.unet( | |
inv_latent_model_input, | |
t, | |
encoder_hidden_states=null_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
if do_classifier_free_guidance: | |
noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond) | |
bsz, channel, frames, width, height = inv_latents.shape | |
inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width) | |
noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width) | |
inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample | |
inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4) | |
use_last_self_attention(self.unet) | |
else: | |
noise_null_pred = None | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, # For unconditional guidance | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
use_last_self_attention(self.unet, False) | |
if do_classifier_free_guidance: | |
noise_pred_text = noise_pred | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# reshape latents | |
bsz, channel, frames, width, height = latents.shape | |
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) | |
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# reshape latents back | |
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4) | |
return { | |
"latents": latents, | |
"inv_latents": inv_latents, | |
"noise_pred": noise_pred, | |
"noise_null_pred": noise_null_pred, | |
} | |
def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds): | |
inv_scaled = self.scheduler.scale_model_input(inv_latents, t) | |
noise_null_pred = self.unet( | |
inv_scaled[:,:,0:1,:,:], | |
t, | |
encoder_hidden_states=null_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
with torch.enable_grad(): | |
latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True) | |
optimizer = torch.optim.Adam([latent_train], lr=1e-3) | |
for j in range(10): | |
latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2) | |
latent_input_unet = self.scheduler.scale_model_input(latent_in, t) | |
noise_pred = self.unet( | |
latent_input_unet, | |
t, | |
encoder_hidden_states=prompt_embeds, # For unconditional guidance | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:]) | |
loss.backward() | |
optimizer.step() | |
optimizer.zero_grad() | |
print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item())) | |
latents = latent_in.detach() | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_frames: int = 16, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 9.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
inv_latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "np", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = None, | |
lambda_ = 0.5, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated video. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated video. | |
num_frames (`int`, *optional*, defaults to 16): | |
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
amounts to 2 seconds of video. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | |
`(batch_size, num_channel, num_frames, height, width)`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"np"`): | |
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead | |
of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
Examples: | |
Returns: | |
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is | |
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
num_images_per_prompt = 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
# # 2. Define call parameters | |
# if prompt is not None and isinstance(prompt, str): | |
# batch_size = 1 | |
# elif prompt is not None and isinstance(prompt, list): | |
# batch_size = len(prompt) | |
# else: | |
# batch_size = prompt_embeds.shape[0] | |
batch_size = inv_latents.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
[prompt] * batch_size, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
[negative_prompt] * batch_size if negative_prompt is not None else None, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=clip_skip, | |
) | |
null_embeds, negative_prompt_embeds = self.encode_prompt( | |
[""] * batch_size, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
[negative_prompt] * batch_size if negative_prompt is not None else None, | |
prompt_embeds=None, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=clip_skip, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
inv_latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
inv_latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
init_attention_func(self.unet) | |
print("Setup for Current Run") | |
print("----------------------") | |
print("Prompt ", prompt) | |
print("Batch size ", batch_size) | |
print("Num frames ", latents.shape[2]) | |
print("Lambda ", lambda_) | |
init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size) | |
iters_to_alter = [-1]#i for i in range(0, TAU_1)] | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device) | |
mask_in[:, :, 0, :, :] = 1 | |
assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0]) | |
inv_latents = inv_latents.repeat(1,1,num_frames,1,1) | |
latents = inv_latents * mask_in + latents * (1-mask_in) | |
for i, t in enumerate(timesteps): | |
curr_copy = max(1,num_frames - i) | |
inv_latents = inv_latents[:,:,:curr_copy, :, : ] | |
if i in iters_to_alter: | |
latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds) | |
output_dict = self.call_network( | |
negative_prompt_embeds, | |
prompt_embeds, | |
latents, | |
inv_latents, | |
t, | |
i, | |
null_embeds, | |
cross_attention_kwargs, | |
extra_step_kwargs, | |
do_classifier_free_guidance, | |
guidance_scale, | |
) | |
latents = output_dict["latents"] | |
inv_latents = output_dict["inv_latents"] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# 8. Post processing | |
if output_type == "latent": | |
video = latents | |
else: | |
video_tensor = self.decode_latents(latents) | |
video = tensor2vid(video_tensor, self.image_processor, output_type) | |
# 9. Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return TextToVideoSDPipelineOutput(frames=video) |