fffiloni commited on
Commit
9c8a803
·
verified ·
1 Parent(s): a026bc9

Import torch2 adaptation file

Browse files
Files changed (1) hide show
  1. text2vid_torch2.py +707 -0
text2vid_torch2.py ADDED
@@ -0,0 +1,707 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Callable, Dict, List, Optional, Union
2
+ import numpy as np
3
+ import torch
4
+ from transformers import CLIPTextModel, CLIPTokenizer
5
+ from diffusers.image_processor import VaeImageProcessor
6
+ from diffusers.models import AutoencoderKL, UNet3DConditionModel
7
+ from diffusers.schedulers import KarrasDiffusionSchedulers
8
+ from diffusers.utils import (deprecate,
9
+ logging,
10
+ replace_example_docstring)
11
+ from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput
12
+ from torch.nn import functional as F
13
+ from diffusers.models.attention_processor import Attention
14
+ import math
15
+
16
+
17
+ TAU_2 = 15
18
+ TAU_1 = 10
19
+
20
+
21
+ def init_attention_params(unet, num_frames, lambda_=None, bs=None):
22
+
23
+
24
+ for name, module in unet.named_modules():
25
+ module_name = type(module).__name__
26
+ if module_name == "Attention":
27
+ module.processor.LAMBDA = lambda_
28
+ module.processor.bs = bs
29
+ module.processor.num_frames = num_frames
30
+
31
+
32
+ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
33
+ is_causal=False, scale=None, enable_gqa=False, k1 = None, d_l = None) -> torch.Tensor:
34
+
35
+ L, S = query.size(-2), key.size(-2)
36
+ scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
37
+ attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
38
+ if is_causal:
39
+ assert attn_mask is None
40
+ temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
41
+ attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
42
+ attn_bias.to(query.dtype)
43
+
44
+ if attn_mask is not None:
45
+ if attn_mask.dtype == torch.bool:
46
+ attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
47
+ else:
48
+ attn_bias += attn_mask
49
+
50
+ if enable_gqa:
51
+ if k1 is not None and d_l is not None:
52
+ k1 = k1.repeat_interleave(query.size(-3)//k1.size(-3), -3)
53
+ key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
54
+ value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
55
+
56
+ if k1 is not None:
57
+ attn_k1 = query @ k1.transpose(-2, -1)
58
+ attn_weight = query @ key.transpose(-2, -1)
59
+ attn_weight[:,:len(d_l),0] = attn_k1[:,:len(d_l),0] * d_l
60
+ attn_weight = attn_weight * scale_factor
61
+ else:
62
+ attn_weight = query @ key.transpose(-2, -1) * scale_factor
63
+
64
+ attn_weight += attn_bias
65
+
66
+ attn_weight = torch.softmax(attn_weight, dim=-1)
67
+ attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
68
+ return attn_weight @ value
69
+
70
+ class AttnProcessor2_0:
71
+ r"""
72
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
73
+ """
74
+
75
+ def __init__(self):
76
+ if not hasattr(F, "scaled_dot_product_attention"):
77
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
78
+
79
+ def __call__(
80
+ self,
81
+ attn: Attention,
82
+ hidden_states: torch.Tensor,
83
+ encoder_hidden_states: Optional[torch.Tensor] = None,
84
+ attention_mask: Optional[torch.Tensor] = None,
85
+ temb: Optional[torch.Tensor] = None,
86
+ *args,
87
+ **kwargs,
88
+ ) -> torch.Tensor:
89
+ if len(args) > 0 or kwargs.get("scale", None) is not None:
90
+ deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
91
+ deprecate("scale", "1.0.0", deprecation_message)
92
+
93
+ residual = hidden_states
94
+ if attn.spatial_norm is not None:
95
+ hidden_states = attn.spatial_norm(hidden_states, temb)
96
+
97
+ input_ndim = hidden_states.ndim
98
+
99
+ if input_ndim == 4:
100
+ batch_size, channel, height, width = hidden_states.shape
101
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
102
+
103
+ batch_size, sequence_length, _ = (
104
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
105
+ )
106
+
107
+ if attention_mask is not None:
108
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
109
+ # scaled_dot_product_attention expects attention_mask shape to be
110
+ # (batch, heads, source_length, target_length)
111
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
112
+
113
+ if attn.group_norm is not None:
114
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
115
+
116
+ query = attn.to_q(hidden_states)
117
+
118
+ if encoder_hidden_states is None:
119
+ encoder_hidden_states = hidden_states
120
+ elif attn.norm_cross:
121
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
122
+
123
+ key = attn.to_k(encoder_hidden_states)
124
+ value = attn.to_v(encoder_hidden_states)
125
+
126
+ inner_dim = key.shape[-1]
127
+ head_dim = inner_dim // attn.heads
128
+
129
+ query, key, d_l, k1 = self.get_qk(query, key)
130
+
131
+
132
+
133
+
134
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
135
+
136
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
137
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
138
+
139
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
140
+ # TODO: add support for attn.scale when we move to Torch 2.1
141
+
142
+ if d_l is not None:
143
+ k1 = k1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
144
+ hidden_states = scaled_dot_product_attention(
145
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, k1 = k1, d_l = d_l
146
+ )
147
+ else:
148
+
149
+ hidden_states = scaled_dot_product_attention(
150
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
151
+ )
152
+
153
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
154
+ hidden_states = hidden_states.to(query.dtype)
155
+
156
+ # linear proj
157
+ hidden_states = attn.to_out[0](hidden_states)
158
+ # dropout
159
+ hidden_states = attn.to_out[1](hidden_states)
160
+
161
+ if input_ndim == 4:
162
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
163
+
164
+ if attn.residual_connection:
165
+ hidden_states = hidden_states + residual
166
+
167
+ hidden_states = hidden_states / attn.rescale_output_factor
168
+
169
+ return hidden_states
170
+
171
+ def get_qk(
172
+ self, query, key):
173
+ r"""
174
+ Compute the attention scores.
175
+
176
+ Args:
177
+ query (`torch.Tensor`): The query tensor.
178
+ key (`torch.Tensor`): The key tensor.
179
+ attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
180
+
181
+ Returns:
182
+ `torch.Tensor`: The attention probabilities/scores.
183
+ """
184
+
185
+
186
+
187
+ q_old = query.clone()
188
+ k_old = key.clone()
189
+ dynamic_lambda = None
190
+ key1 = None
191
+
192
+ if self.use_last_attn_slice:# and self.last_attn_slice[0].shape[0] == query.shape[0]:# and query.shape[1]==self.num_frames:
193
+
194
+ if self.last_attn_slice is not None:
195
+
196
+ query_list = self.last_attn_slice[0]
197
+ key_list = self.last_attn_slice[1]
198
+
199
+
200
+ if query.shape[1] == self.num_frames and query.shape == key.shape:
201
+
202
+ key1 = key.clone()
203
+ key1[:,:1,:key_list.shape[2]] = key_list[:,:1]
204
+ dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda()
205
+
206
+ if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames:
207
+
208
+ batch_dim = query_list.shape[0] // self.bs
209
+ all_dim = query.shape[0] // self.bs
210
+ for i in range(self.bs):
211
+ query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim]
212
+
213
+ if self.save_last_attn_slice:
214
+
215
+ self.last_attn_slice = [
216
+ query,
217
+ key,
218
+ ]
219
+
220
+ self.save_last_attn_slice = False
221
+
222
+
223
+ return query, key, dynamic_lambda, key1
224
+
225
+
226
+ def init_attention_func(unet):
227
+
228
+ for name, module in unet.named_modules():
229
+ module_name = type(module).__name__
230
+ if module_name == "Attention":
231
+
232
+ module.set_processor(AttnProcessor2_0())
233
+ module.processor.last_attn_slice = None
234
+ module.processor.use_last_attn_slice = False
235
+ module.processor.save_last_attn_slice = False
236
+ module.processor.LAMBDA = 0
237
+ module.processor.num_frames = None
238
+ module.processor.bs = 0
239
+
240
+
241
+ return unet
242
+
243
+
244
+ def use_last_self_attention(unet, use=True):
245
+ for name, module in unet.named_modules():
246
+ module_name = type(module).__name__
247
+ if module_name == "Attention" and "attn1" in name:
248
+ module.processor.use_last_attn_slice = use
249
+
250
+ def save_last_self_attention(unet, save=True):
251
+ for name, module in unet.named_modules():
252
+ module_name = type(module).__name__
253
+ if module_name == "Attention" and "attn1" in name:
254
+ module.processor.save_last_attn_slice = save
255
+
256
+
257
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
258
+
259
+ EXAMPLE_DOC_STRING = """
260
+ Examples:
261
+ ```py
262
+ >>> import torch
263
+ >>> from diffusers import TextToVideoSDPipeline
264
+ >>> from diffusers.utils import export_to_video
265
+
266
+ >>> pipe = TextToVideoSDPipeline.from_pretrained(
267
+ ... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
268
+ ... )
269
+ >>> pipe.enable_model_cpu_offload()
270
+
271
+ >>> prompt = "Spiderman is surfing"
272
+ >>> video_frames = pipe(prompt).frames[0]
273
+ >>> video_path = export_to_video(video_frames)
274
+ >>> video_path
275
+ ```
276
+ """
277
+
278
+
279
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
280
+ def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
281
+ batch_size, channels, num_frames, height, width = video.shape
282
+ outputs = []
283
+ for batch_idx in range(batch_size):
284
+ batch_vid = video[batch_idx].permute(1, 0, 2, 3)
285
+ batch_output = processor.postprocess(batch_vid, output_type)
286
+
287
+ outputs.append(batch_output)
288
+
289
+ if output_type == "np":
290
+ outputs = np.stack(outputs)
291
+
292
+ elif output_type == "pt":
293
+ outputs = torch.stack(outputs)
294
+
295
+ elif not output_type == "pil":
296
+ raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
297
+
298
+ return outputs
299
+
300
+ from diffusers import TextToVideoSDPipeline
301
+ class TextToVideoSDPipelineModded(TextToVideoSDPipeline):
302
+ def __init__(
303
+ self,
304
+ vae: AutoencoderKL,
305
+ text_encoder: CLIPTextModel,
306
+ tokenizer: CLIPTokenizer,
307
+ unet: UNet3DConditionModel,
308
+ scheduler: KarrasDiffusionSchedulers,
309
+ ):
310
+ super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
311
+
312
+
313
+ def call_network(self,
314
+ negative_prompt_embeds,
315
+ prompt_embeds,
316
+ latents,
317
+ inv_latents,
318
+ t,
319
+ i,
320
+ null_embeds,
321
+ cross_attention_kwargs,
322
+ extra_step_kwargs,
323
+ do_classifier_free_guidance,
324
+ guidance_scale,
325
+ ):
326
+
327
+
328
+ inv_latent_model_input = inv_latents
329
+ inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t)
330
+
331
+ latent_model_input = latents
332
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
333
+
334
+
335
+ if do_classifier_free_guidance:
336
+ noise_pred_uncond = self.unet(
337
+ latent_model_input,
338
+ t,
339
+ encoder_hidden_states=negative_prompt_embeds,
340
+ cross_attention_kwargs=cross_attention_kwargs,
341
+ return_dict=False,
342
+ )[0]
343
+
344
+ noise_null_pred_uncond = self.unet(
345
+ inv_latent_model_input,
346
+ t,
347
+ encoder_hidden_states=negative_prompt_embeds,
348
+ cross_attention_kwargs=cross_attention_kwargs,
349
+ return_dict=False,
350
+ )[0]
351
+
352
+
353
+
354
+ if i<=TAU_2:
355
+ save_last_self_attention(self.unet)
356
+
357
+
358
+ noise_null_pred = self.unet(
359
+ inv_latent_model_input,
360
+ t,
361
+ encoder_hidden_states=null_embeds,
362
+ cross_attention_kwargs=cross_attention_kwargs,
363
+ return_dict=False,
364
+ )[0]
365
+
366
+ if do_classifier_free_guidance:
367
+ noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond)
368
+
369
+ bsz, channel, frames, width, height = inv_latents.shape
370
+
371
+ inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
372
+ noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
373
+ inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample
374
+ inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4)
375
+
376
+ use_last_self_attention(self.unet)
377
+ else:
378
+ noise_null_pred = None
379
+
380
+
381
+
382
+
383
+ noise_pred = self.unet(
384
+ latent_model_input,
385
+ t,
386
+ encoder_hidden_states=prompt_embeds, # For unconditional guidance
387
+ cross_attention_kwargs=cross_attention_kwargs,
388
+ return_dict=False,
389
+ )[0]
390
+
391
+ use_last_self_attention(self.unet, False)
392
+
393
+
394
+ if do_classifier_free_guidance:
395
+ noise_pred_text = noise_pred
396
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
397
+
398
+ # reshape latents
399
+ bsz, channel, frames, width, height = latents.shape
400
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
401
+ noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
402
+
403
+ # compute the previous noisy sample x_t -> x_t-1
404
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
405
+
406
+
407
+
408
+ # reshape latents back
409
+ latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
410
+
411
+
412
+ return {
413
+ "latents": latents,
414
+ "inv_latents": inv_latents,
415
+ "noise_pred": noise_pred,
416
+ "noise_null_pred": noise_null_pred,
417
+ }
418
+
419
+ def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds):
420
+ inv_scaled = self.scheduler.scale_model_input(inv_latents, t)
421
+
422
+ noise_null_pred = self.unet(
423
+ inv_scaled[:,:,0:1,:,:],
424
+ t,
425
+ encoder_hidden_states=null_embeds,
426
+ cross_attention_kwargs=cross_attention_kwargs,
427
+ return_dict=False,
428
+ )[0]
429
+
430
+ with torch.enable_grad():
431
+
432
+ latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True)
433
+ optimizer = torch.optim.Adam([latent_train], lr=1e-3)
434
+
435
+ for j in range(10):
436
+ latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2)
437
+ latent_input_unet = self.scheduler.scale_model_input(latent_in, t)
438
+
439
+ noise_pred = self.unet(
440
+ latent_input_unet,
441
+ t,
442
+ encoder_hidden_states=prompt_embeds, # For unconditional guidance
443
+ cross_attention_kwargs=cross_attention_kwargs,
444
+ return_dict=False,
445
+ )[0]
446
+
447
+ loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:])
448
+
449
+ loss.backward()
450
+
451
+ optimizer.step()
452
+ optimizer.zero_grad()
453
+
454
+ print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item()))
455
+ latents = latent_in.detach()
456
+ return latents
457
+
458
+ @torch.no_grad()
459
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
460
+ def __call__(
461
+ self,
462
+ prompt: Union[str, List[str]] = None,
463
+ height: Optional[int] = None,
464
+ width: Optional[int] = None,
465
+ num_frames: int = 16,
466
+ num_inference_steps: int = 50,
467
+ guidance_scale: float = 9.0,
468
+ negative_prompt: Optional[Union[str, List[str]]] = None,
469
+ eta: float = 0.0,
470
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
471
+ latents: Optional[torch.FloatTensor] = None,
472
+ inv_latents: Optional[torch.FloatTensor] = None,
473
+ prompt_embeds: Optional[torch.FloatTensor] = None,
474
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
475
+ output_type: Optional[str] = "np",
476
+ return_dict: bool = True,
477
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
478
+ callback_steps: int = 1,
479
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
480
+ clip_skip: Optional[int] = None,
481
+ lambda_ = 0.5,
482
+ ):
483
+ r"""
484
+ The call function to the pipeline for generation.
485
+
486
+ Args:
487
+ prompt (`str` or `List[str]`, *optional*):
488
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
489
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
490
+ The height in pixels of the generated video.
491
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
492
+ The width in pixels of the generated video.
493
+ num_frames (`int`, *optional*, defaults to 16):
494
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
495
+ amounts to 2 seconds of video.
496
+ num_inference_steps (`int`, *optional*, defaults to 50):
497
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
498
+ expense of slower inference.
499
+ guidance_scale (`float`, *optional*, defaults to 7.5):
500
+ A higher guidance scale value encourages the model to generate images closely linked to the text
501
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
502
+ negative_prompt (`str` or `List[str]`, *optional*):
503
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
504
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
505
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
506
+ The number of images to generate per prompt.
507
+ eta (`float`, *optional*, defaults to 0.0):
508
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
509
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
510
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
511
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
512
+ generation deterministic.
513
+ latents (`torch.FloatTensor`, *optional*):
514
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
515
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
516
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
517
+ `(batch_size, num_channel, num_frames, height, width)`.
518
+ prompt_embeds (`torch.FloatTensor`, *optional*):
519
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
520
+ provided, text embeddings are generated from the `prompt` input argument.
521
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
522
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
523
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
524
+ output_type (`str`, *optional*, defaults to `"np"`):
525
+ The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
526
+ return_dict (`bool`, *optional*, defaults to `True`):
527
+ Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
528
+ of a plain tuple.
529
+ callback (`Callable`, *optional*):
530
+ A function that calls every `callback_steps` steps during inference. The function is called with the
531
+ following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
532
+ callback_steps (`int`, *optional*, defaults to 1):
533
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
534
+ every step.
535
+ cross_attention_kwargs (`dict`, *optional*):
536
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
537
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
538
+ clip_skip (`int`, *optional*):
539
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
540
+ the output of the pre-final layer will be used for computing the prompt embeddings.
541
+ Examples:
542
+
543
+ Returns:
544
+ [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
545
+ If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
546
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
547
+ """
548
+ # 0. Default height and width to unet
549
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
550
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
551
+
552
+ num_images_per_prompt = 1
553
+
554
+ # 1. Check inputs. Raise error if not correct
555
+ self.check_inputs(
556
+ prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
557
+ )
558
+
559
+ # # 2. Define call parameters
560
+ # if prompt is not None and isinstance(prompt, str):
561
+ # batch_size = 1
562
+ # elif prompt is not None and isinstance(prompt, list):
563
+ # batch_size = len(prompt)
564
+ # else:
565
+ # batch_size = prompt_embeds.shape[0]
566
+
567
+ batch_size = inv_latents.shape[0]
568
+ device = self._execution_device
569
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
570
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
571
+ # corresponds to doing no classifier free guidance.
572
+ do_classifier_free_guidance = guidance_scale > 1.0
573
+
574
+ # 3. Encode input prompt
575
+ text_encoder_lora_scale = (
576
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
577
+ )
578
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
579
+ [prompt] * batch_size,
580
+ device,
581
+ num_images_per_prompt,
582
+ do_classifier_free_guidance,
583
+ [negative_prompt] * batch_size if negative_prompt is not None else None,
584
+ prompt_embeds=prompt_embeds,
585
+ negative_prompt_embeds=negative_prompt_embeds,
586
+ lora_scale=text_encoder_lora_scale,
587
+ clip_skip=clip_skip,
588
+ )
589
+ null_embeds, negative_prompt_embeds = self.encode_prompt(
590
+ [""] * batch_size,
591
+ device,
592
+ num_images_per_prompt,
593
+ do_classifier_free_guidance,
594
+ [negative_prompt] * batch_size if negative_prompt is not None else None,
595
+ prompt_embeds=None,
596
+ negative_prompt_embeds=negative_prompt_embeds,
597
+ lora_scale=text_encoder_lora_scale,
598
+ clip_skip=clip_skip,
599
+ )
600
+
601
+
602
+
603
+ # 4. Prepare timesteps
604
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
605
+ timesteps = self.scheduler.timesteps
606
+
607
+ # 5. Prepare latent variables
608
+ num_channels_latents = self.unet.config.in_channels
609
+ latents = self.prepare_latents(
610
+ batch_size * num_images_per_prompt,
611
+ num_channels_latents,
612
+ num_frames,
613
+ height,
614
+ width,
615
+ prompt_embeds.dtype,
616
+ device,
617
+ generator,
618
+ latents,
619
+ )
620
+ inv_latents = self.prepare_latents(
621
+ batch_size * num_images_per_prompt,
622
+ num_channels_latents,
623
+ num_frames,
624
+ height,
625
+ width,
626
+ prompt_embeds.dtype,
627
+ device,
628
+ generator,
629
+ inv_latents,
630
+ )
631
+
632
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
633
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
634
+
635
+ # 7. Denoising loop
636
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
637
+
638
+ init_attention_func(self.unet)
639
+ print("Setup for Current Run")
640
+ print("----------------------")
641
+ print("Prompt ", prompt)
642
+ print("Batch size ", batch_size)
643
+ print("Num frames ", latents.shape[2])
644
+ print("Lambda ", lambda_)
645
+
646
+ init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size)
647
+
648
+ iters_to_alter = [-1]#i for i in range(0, TAU_1)]
649
+
650
+
651
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
652
+
653
+ mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device)
654
+ mask_in[:, :, 0, :, :] = 1
655
+ assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0])
656
+ inv_latents = inv_latents.repeat(1,1,num_frames,1,1)
657
+
658
+ latents = inv_latents * mask_in + latents * (1-mask_in)
659
+
660
+
661
+
662
+ for i, t in enumerate(timesteps):
663
+
664
+ curr_copy = max(1,num_frames - i)
665
+ inv_latents = inv_latents[:,:,:curr_copy, :, : ]
666
+ if i in iters_to_alter:
667
+
668
+ latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds)
669
+
670
+
671
+ output_dict = self.call_network(
672
+ negative_prompt_embeds,
673
+ prompt_embeds,
674
+ latents,
675
+ inv_latents,
676
+ t,
677
+ i,
678
+ null_embeds,
679
+ cross_attention_kwargs,
680
+ extra_step_kwargs,
681
+ do_classifier_free_guidance,
682
+ guidance_scale,
683
+ )
684
+ latents = output_dict["latents"]
685
+ inv_latents = output_dict["inv_latents"]
686
+
687
+ # call the callback, if provided
688
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
689
+ progress_bar.update()
690
+ if callback is not None and i % callback_steps == 0:
691
+ step_idx = i // getattr(self.scheduler, "order", 1)
692
+ callback(step_idx, t, latents)
693
+
694
+ # 8. Post processing
695
+ if output_type == "latent":
696
+ video = latents
697
+ else:
698
+ video_tensor = self.decode_latents(latents)
699
+ video = tensor2vid(video_tensor, self.image_processor, output_type)
700
+
701
+ # 9. Offload all models
702
+ self.maybe_free_model_hooks()
703
+
704
+ if not return_dict:
705
+ return (video,)
706
+
707
+ return TextToVideoSDPipelineOutput(frames=video)