from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import torch from transformers import CLIPTextModel, CLIPTokenizer from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL, UNet3DConditionModel from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import (deprecate, logging, replace_example_docstring) from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput from torch.nn import functional as F from diffusers.models.attention_processor import Attention import math TAU_2 = 15 TAU_1 = 10 def init_attention_params(unet, num_frames, lambda_=None, bs=None): for name, module in unet.named_modules(): module_name = type(module).__name__ if module_name == "Attention": module.processor.LAMBDA = lambda_ module.processor.bs = bs module.processor.num_frames = num_frames def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None, enable_gqa=False, k1 = None, d_l = None) -> torch.Tensor: L, S = query.size(-2), key.size(-2) scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device) if is_causal: assert attn_mask is None temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) attn_bias.to(query.dtype) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias += attn_mask if enable_gqa: if k1 is not None and d_l is not None: k1 = k1.repeat_interleave(query.size(-3)//k1.size(-3), -3) key = key.repeat_interleave(query.size(-3)//key.size(-3), -3) value = value.repeat_interleave(query.size(-3)//value.size(-3), -3) if k1 is not None: attn_k1 = query @ k1.transpose(-2, -1) attn_weight = query @ key.transpose(-2, -1) attn_weight[:,:len(d_l),0] = attn_k1[:,:len(d_l),0] * d_l attn_weight = attn_weight * scale_factor else: attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias attn_weight = torch.softmax(attn_weight, dim=-1) attn_weight = torch.dropout(attn_weight, dropout_p, train=True) return attn_weight @ value class AttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query, key, d_l, k1 = self.get_qk(query, key) query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if d_l is not None: k1 = k1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states = scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, k1 = k1, d_l = d_l ) else: hidden_states = scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states ''' def get_qk( self, query, key): r""" Compute the attention scores. Args: query (`torch.Tensor`): The query tensor. key (`torch.Tensor`): The key tensor. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. Returns: `torch.Tensor`: The attention probabilities/scores. """ q_old = query.clone() k_old = key.clone() dynamic_lambda = None key1 = None if self.use_last_attn_slice:# and self.last_attn_slice[0].shape[0] == query.shape[0]:# and query.shape[1]==self.num_frames: if self.last_attn_slice is not None: query_list = self.last_attn_slice[0] key_list = self.last_attn_slice[1] if query.shape[1] == self.num_frames and query.shape == key.shape: key1 = key.clone() key1[:,:1,:key_list.shape[2]] = key_list[:,:1] dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda() if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames: batch_dim = query_list.shape[0] // self.bs all_dim = query.shape[0] // self.bs for i in range(self.bs): query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim] if self.save_last_attn_slice: self.last_attn_slice = [ query, key, ] self.save_last_attn_slice = False return query, key, dynamic_lambda, key1 ''' import torch def get_qk(self, query, key): r""" Compute the attention scores. Args: query (`torch.Tensor`): The query tensor. key (`torch.Tensor`): The key tensor. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. Returns: `torch.Tensor`: The attention probabilities/scores. """ q_old = query.clone() k_old = key.clone() dynamic_lambda = None key1 = None try: if self.use_last_attn_slice: if self.last_attn_slice is not None: query_list = self.last_attn_slice[0] key_list = self.last_attn_slice[1] if query.shape[1] == self.num_frames and query.shape == key.shape: key1 = key.clone() # Ensure the batch dimension of key1 and key_list match batch_size_key1 = key1.shape[0] batch_size_key_list = key_list.shape[0] if batch_size_key1 != batch_size_key_list: # Handle mismatch: either pad or slice to match sizes if batch_size_key1 > batch_size_key_list: # Pad key_list if key1 batch size is larger padding = (0, 0, 0, batch_size_key1 - batch_size_key_list) # (left, right, top, bottom) key_list = torch.nn.functional.pad(key_list, padding, "constant", 0) else: # Slice key1 if key_list batch size is larger key1 = key1[:batch_size_key_list] # Proceed with assignment after matching batch dimensions key1[:,:1,:key_list.shape[2]] = key_list[:,:1] dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda() if q_old.shape == k_old.shape and q_old.shape[1] != self.num_frames: batch_dim = query_list.shape[0] // self.bs all_dim = query.shape[0] // self.bs for i in range(self.bs): target_size = min(query[i*all_dim:(i*all_dim) + batch_dim, :query_list.shape[1], :query_list.shape[2]].size(0), query_list[i*batch_dim:(i+1)*batch_dim].size(0)) query_slice_shape = query[i*all_dim:(i*all_dim) + target_size, :query_list.shape[1], :query_list.shape[2]].shape query_list_slice_shape = query_list[i*batch_dim:i*batch_dim + target_size].shape if query_slice_shape[1] != query_list_slice_shape[1]: print(f"Warning: Dimension mismatch. query_slice_shape: {query_slice_shape}, query_list_slice_shape: {query_list_slice_shape}. Adjusting to compatible sizes.") target_size = min(query_slice_shape[1], query_list_slice_shape[1]) query[i*all_dim:(i*all_dim) + target_size, :query_list.shape[1], :query_list.shape[2]] = \ query_list[i*batch_dim:i*batch_dim + target_size] if self.save_last_attn_slice: self.last_attn_slice = [query, key] self.save_last_attn_slice = False except RuntimeError as e: # If a RuntimeError happens, catch it and clean CUDA memory print(f"RuntimeError occurred: {e}. Cleaning up CUDA memory...") torch.cuda.empty_cache() raise # Re-raise the error to let the caller handle it further if needed return query, key, dynamic_lambda, key1 def init_attention_func(unet): for name, module in unet.named_modules(): module_name = type(module).__name__ if module_name == "Attention": module.set_processor(AttnProcessor2_0()) module.processor.last_attn_slice = None module.processor.use_last_attn_slice = False module.processor.save_last_attn_slice = False module.processor.LAMBDA = 0 module.processor.num_frames = None module.processor.bs = 0 return unet def use_last_self_attention(unet, use=True): for name, module in unet.named_modules(): module_name = type(module).__name__ if module_name == "Attention" and "attn1" in name: module.processor.use_last_attn_slice = use def save_last_self_attention(unet, save=True): for name, module in unet.named_modules(): module_name = type(module).__name__ if module_name == "Attention" and "attn1" in name: module.processor.save_last_attn_slice = save logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import TextToVideoSDPipeline >>> from diffusers.utils import export_to_video >>> pipe = TextToVideoSDPipeline.from_pretrained( ... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" ... ) >>> pipe.enable_model_cpu_offload() >>> prompt = "Spiderman is surfing" >>> video_frames = pipe(prompt).frames[0] >>> video_path = export_to_video(video_frames) >>> video_path ``` """ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): batch_size, channels, num_frames, height, width = video.shape outputs = [] for batch_idx in range(batch_size): batch_vid = video[batch_idx].permute(1, 0, 2, 3) batch_output = processor.postprocess(batch_vid, output_type) outputs.append(batch_output) if output_type == "np": outputs = np.stack(outputs) elif output_type == "pt": outputs = torch.stack(outputs) elif not output_type == "pil": raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") return outputs from diffusers import TextToVideoSDPipeline class TextToVideoSDPipelineModded(TextToVideoSDPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet3DConditionModel, scheduler: KarrasDiffusionSchedulers, ): super().__init__(vae, text_encoder, tokenizer, unet, scheduler) def call_network(self, negative_prompt_embeds, prompt_embeds, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, extra_step_kwargs, do_classifier_free_guidance, guidance_scale, ): inv_latent_model_input = inv_latents inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t) latent_model_input = latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) if do_classifier_free_guidance: noise_pred_uncond = self.unet( latent_model_input, t, encoder_hidden_states=negative_prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] noise_null_pred_uncond = self.unet( inv_latent_model_input, t, encoder_hidden_states=negative_prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] if i<=TAU_2: save_last_self_attention(self.unet) noise_null_pred = self.unet( inv_latent_model_input, t, encoder_hidden_states=null_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] if do_classifier_free_guidance: noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond) bsz, channel, frames, width, height = inv_latents.shape inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width) noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width) inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4) use_last_self_attention(self.unet) else: noise_null_pred = None noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, # For unconditional guidance cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] use_last_self_attention(self.unet, False) if do_classifier_free_guidance: noise_pred_text = noise_pred noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # reshape latents bsz, channel, frames, width, height = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # reshape latents back latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4) return { "latents": latents, "inv_latents": inv_latents, "noise_pred": noise_pred, "noise_null_pred": noise_null_pred, } def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds): inv_scaled = self.scheduler.scale_model_input(inv_latents, t) noise_null_pred = self.unet( inv_scaled[:,:,0:1,:,:], t, encoder_hidden_states=null_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] with torch.enable_grad(): latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True) optimizer = torch.optim.Adam([latent_train], lr=1e-3) for j in range(10): latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2) latent_input_unet = self.scheduler.scale_model_input(latent_in, t) noise_pred = self.unet( latent_input_unet, t, encoder_hidden_states=prompt_embeds, # For unconditional guidance cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:]) loss.backward() optimizer.step() optimizer.zero_grad() print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item())) latents = latent_in.detach() return latents @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_frames: int = 16, num_inference_steps: int = 50, guidance_scale: float = 9.0, negative_prompt: Optional[Union[str, List[str]]] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, inv_latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "np", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, lambda_ = 0.5, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated video. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated video. num_frames (`int`, *optional*, defaults to 16): The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds amounts to 2 seconds of video. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. Latents should be of shape `(batch_size, num_channel, num_frames, height, width)`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_images_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # # 2. Define call parameters # if prompt is not None and isinstance(prompt, str): # batch_size = 1 # elif prompt is not None and isinstance(prompt, list): # batch_size = len(prompt) # else: # batch_size = prompt_embeds.shape[0] batch_size = inv_latents.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( [prompt] * batch_size, device, num_images_per_prompt, do_classifier_free_guidance, [negative_prompt] * batch_size if negative_prompt is not None else None, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) null_embeds, negative_prompt_embeds = self.encode_prompt( [""] * batch_size, device, num_images_per_prompt, do_classifier_free_guidance, [negative_prompt] * batch_size if negative_prompt is not None else None, prompt_embeds=None, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) inv_latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, inv_latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order init_attention_func(self.unet) print("Setup for Current Run") print("----------------------") print("Prompt ", prompt) print("Batch size ", batch_size) print("Num frames ", latents.shape[2]) print("Lambda ", lambda_) init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size) iters_to_alter = [-1]#i for i in range(0, TAU_1)] with self.progress_bar(total=num_inference_steps) as progress_bar: mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device) mask_in[:, :, 0, :, :] = 1 assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0]) inv_latents = inv_latents.repeat(1,1,num_frames,1,1) latents = inv_latents * mask_in + latents * (1-mask_in) for i, t in enumerate(timesteps): curr_copy = max(1,num_frames - i) inv_latents = inv_latents[:,:,:curr_copy, :, : ] if i in iters_to_alter: latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds) output_dict = self.call_network( negative_prompt_embeds, prompt_embeds, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, extra_step_kwargs, do_classifier_free_guidance, guidance_scale, ) latents = output_dict["latents"] inv_latents = output_dict["inv_latents"] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 8. Post processing if output_type == "latent": video = latents else: video_tensor = self.decode_latents(latents) video = tensor2vid(video_tensor, self.image_processor, output_type) # 9. Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return TextToVideoSDPipelineOutput(frames=video)