File size: 10,152 Bytes
1a9b87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from dataclasses import dataclass
from typing import Optional

import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from diffusers.utils import BaseOutput
from einops import rearrange, repeat
from torch import nn

from memo.models.attention import JointAudioTemporalBasicTransformerBlock, TemporalBasicTransformerBlock


def create_custom_forward(module, return_dict=None):
    def custom_forward(*inputs):
        if return_dict is not None:
            return module(*inputs, return_dict=return_dict)

        return module(*inputs)

    return custom_forward


@dataclass
class Transformer3DModelOutput(BaseOutput):
    sample: torch.FloatTensor


class Transformer3DModel(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        activation_fn: str = "geglu",
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        unet_use_cross_frame_attention=None,
        unet_use_temporal_attention=None,
        use_audio_module=False,
        depth=0,
        unet_block_name=None,
        emo_drop_rate=0.3,
        is_final_block=False,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.use_audio_module = use_audio_module
        # Define input layers
        self.in_channels = in_channels
        self.is_final_block = is_final_block

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        if use_linear_projection:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        if use_audio_module:
            self.transformer_blocks = nn.ModuleList(
                [
                    JointAudioTemporalBasicTransformerBlock(
                        dim=inner_dim,
                        num_attention_heads=num_attention_heads,
                        attention_head_dim=attention_head_dim,
                        dropout=dropout,
                        cross_attention_dim=cross_attention_dim,
                        activation_fn=activation_fn,
                        attention_bias=attention_bias,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                        unet_use_cross_frame_attention=unet_use_cross_frame_attention,
                        unet_use_temporal_attention=unet_use_temporal_attention,
                        depth=depth,
                        unet_block_name=unet_block_name,
                        use_ada_layer_norm=True,
                        emo_drop_rate=emo_drop_rate,
                        is_final_block=(is_final_block and d == num_layers - 1),
                    )
                    for d in range(num_layers)
                ]
            )
        else:
            self.transformer_blocks = nn.ModuleList(
                [
                    TemporalBasicTransformerBlock(
                        inner_dim,
                        num_attention_heads,
                        attention_head_dim,
                        dropout=dropout,
                        cross_attention_dim=cross_attention_dim,
                        activation_fn=activation_fn,
                        attention_bias=attention_bias,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                    )
                    for _ in range(num_layers)
                ]
            )

        # 4. Define output layers
        if use_linear_projection:
            self.proj_out = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states,
        ref_img_feature=None,
        encoder_hidden_states=None,
        attention_mask=None,
        timestep=None,
        emotion=None,
        uc_mask=None,
        return_dict: bool = True,
    ):
        # Input
        assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")

        if self.use_audio_module:
            if encoder_hidden_states.dim() == 4:
                encoder_hidden_states = rearrange(
                    encoder_hidden_states,
                    "bs f margin dim -> (bs f) margin dim",
                )
        else:
            if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
                encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length)

        batch, _, height, weight = hidden_states.shape
        residual = hidden_states
        if self.use_audio_module:
            residual_audio = encoder_hidden_states

        hidden_states = self.norm(hidden_states)
        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            hidden_states = self.proj_in(hidden_states)

        # Blocks
        for block in self.transformer_blocks:
            if self.training and self.gradient_checkpointing:
                if isinstance(block, TemporalBasicTransformerBlock):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        ref_img_feature,
                        None,  # attention_mask
                        encoder_hidden_states,
                        timestep,
                        None,  # cross_attention_kwargs
                        video_length,
                        uc_mask,
                    )
                elif isinstance(block, JointAudioTemporalBasicTransformerBlock):
                    (
                        hidden_states,
                        encoder_hidden_states,
                    ) = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        encoder_hidden_states,
                        attention_mask,
                        emotion,
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        encoder_hidden_states,
                        timestep,
                        attention_mask,
                        video_length,
                    )
            else:
                if isinstance(block, TemporalBasicTransformerBlock):
                    hidden_states = block(
                        hidden_states=hidden_states,
                        ref_img_feature=ref_img_feature,
                        encoder_hidden_states=encoder_hidden_states,
                        timestep=timestep,
                        video_length=video_length,
                        uc_mask=uc_mask,
                    )
                elif isinstance(block, JointAudioTemporalBasicTransformerBlock):
                    hidden_states, encoder_hidden_states = block(
                        hidden_states,  # shape [2, 4096, 320]
                        encoder_hidden_states=encoder_hidden_states,  # shape [2, 20, 640]
                        attention_mask=attention_mask,
                        emotion=emotion,
                    )
                else:
                    hidden_states = block(
                        hidden_states,  # shape [2, 4096, 320]
                        encoder_hidden_states=encoder_hidden_states,  # shape [2, 20, 640]
                        attention_mask=attention_mask,
                        timestep=timestep,
                        video_length=video_length,
                    )

        # Output
        if not self.use_linear_projection:
            hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual

        if self.use_audio_module and not self.is_final_block:
            audio_output = encoder_hidden_states + residual_audio
        else:
            audio_output = None

        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
        if not return_dict:
            if self.use_audio_module:
                return output, audio_output
            else:
                return output

        if self.use_audio_module:
            return output, audio_output
        else:
            return output