MEMO / memo /models /unet_3d_blocks.py
fffiloni's picture
Migrated from GitHub
1a9b87d verified
raw
history blame
37.2 kB
from typing import Any, Dict
import torch
from diffusers.utils import is_torch_version
from einops import rearrange
from torch import nn
from memo.models.motion_module import MemoryLinearAttnTemporalModule
from memo.models.resnet import Downsample3D, ResnetBlock3D, Upsample3D
from memo.models.transformer_3d import Transformer3DModel
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
return module(*inputs)
return custom_forward
def get_down_block(
down_block_type,
num_layers,
in_channels,
out_channels,
temb_channels,
add_downsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=None,
cross_attention_dim=None,
audio_attention_dim=None,
downsample_padding=None,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
resnet_time_scale_shift="default",
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
use_inflated_groupnorm=None,
use_motion_module=None,
motion_module_kwargs=None,
depth=0,
emo_drop_rate=0.3,
):
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
if down_block_type == "DownBlock3D":
return DownBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
resnet_time_scale_shift=resnet_time_scale_shift,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module,
motion_module_kwargs=motion_module_kwargs,
)
if down_block_type == "CrossAttnDownBlock3D":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
return CrossAttnDownBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
downsample_padding=downsample_padding,
cross_attention_dim=cross_attention_dim,
audio_attention_dim=audio_attention_dim,
attn_num_head_channels=attn_num_head_channels,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module,
motion_module_kwargs=motion_module_kwargs,
depth=depth,
emo_drop_rate=emo_drop_rate,
)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(
up_block_type,
num_layers,
in_channels,
out_channels,
prev_output_channel,
temb_channels,
add_upsample,
resnet_eps,
resnet_act_fn,
attn_num_head_channels,
resnet_groups=None,
cross_attention_dim=None,
audio_attention_dim=None,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
resnet_time_scale_shift="default",
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
use_inflated_groupnorm=None,
use_motion_module=None,
motion_module_kwargs=None,
depth=0,
emo_drop_rate=0.3,
is_final_block=False,
):
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
if up_block_type == "UpBlock3D":
return UpBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
resnet_time_scale_shift=resnet_time_scale_shift,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module,
motion_module_kwargs=motion_module_kwargs,
)
if up_block_type == "CrossAttnUpBlock3D":
if cross_attention_dim is None:
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
return CrossAttnUpBlock3D(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
add_upsample=add_upsample,
resnet_eps=resnet_eps,
resnet_act_fn=resnet_act_fn,
resnet_groups=resnet_groups,
cross_attention_dim=cross_attention_dim,
audio_attention_dim=audio_attention_dim,
attn_num_head_channels=attn_num_head_channels,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module,
motion_module_kwargs=motion_module_kwargs,
depth=depth,
emo_drop_rate=emo_drop_rate,
is_final_block=is_final_block,
)
raise ValueError(f"{up_block_type} does not exist.")
class UNetMidBlock3DCrossAttn(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
output_scale_factor=1.0,
cross_attention_dim=1280,
audio_attention_dim=1024,
dual_cross_attention=False,
use_linear_projection=False,
upcast_attention=False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
use_inflated_groupnorm=None,
motion_module_kwargs=None,
depth=0,
emo_drop_rate=0.3,
):
super().__init__()
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
# there is always at least one resnet
resnets = [
ResnetBlock3D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
use_inflated_groupnorm=use_inflated_groupnorm,
)
]
attentions = []
motion_modules = []
audio_modules = []
for _ in range(num_layers):
if dual_cross_attention:
raise NotImplementedError
attentions.append(
Transformer3DModel(
attn_num_head_channels,
in_channels // attn_num_head_channels,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
)
)
audio_modules.append(
Transformer3DModel(
attn_num_head_channels,
in_channels // attn_num_head_channels,
in_channels=in_channels,
num_layers=1,
cross_attention_dim=audio_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=False,
upcast_attention=upcast_attention,
use_audio_module=True,
depth=depth,
unet_block_name="mid",
emo_drop_rate=emo_drop_rate,
)
)
motion_modules.append(
MemoryLinearAttnTemporalModule(
in_channels=in_channels,
**motion_module_kwargs,
)
)
resnets.append(
ResnetBlock3D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
use_inflated_groupnorm=use_inflated_groupnorm,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.audio_modules = nn.ModuleList(audio_modules)
self.motion_modules = nn.ModuleList(motion_modules)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
ref_feature_list,
temb=None,
encoder_hidden_states=None,
attention_mask=None,
audio_embedding=None,
emotion=None,
uc_mask=None,
is_new_audio=True,
update_past_memory=False,
):
hidden_states = self.resnets[0](hidden_states, temb)
for i, (attn, resnet, audio_module, motion_module) in enumerate(
zip(
self.attentions,
self.resnets[1:],
self.audio_modules,
self.motion_modules,
)
):
ref_feature = ref_feature_list[i]
ref_feature = ref_feature[0]
ref_feature = rearrange(
ref_feature,
"(b f) (h w) c -> b c f h w",
b=hidden_states.shape[0],
w=hidden_states.shape[-1],
)
ref_img_feature = ref_feature[:, :, :1, :, :]
ref_img_feature = rearrange(
ref_img_feature,
"b c f h w -> (b f) (h w) c",
)
motion_frames = ref_feature[:, :, 1:, :, :]
hidden_states = attn(
hidden_states,
ref_img_feature,
encoder_hidden_states=encoder_hidden_states,
uc_mask=uc_mask,
return_dict=False,
)
if audio_module is not None:
hidden_states, audio_embedding = audio_module(
hidden_states,
ref_img_feature=None,
encoder_hidden_states=audio_embedding,
attention_mask=attention_mask,
return_dict=False,
emotion=emotion,
)
if motion_module is not None:
motion_frames = motion_frames.to(device=hidden_states.device, dtype=hidden_states.dtype)
hidden_states = motion_module(
hidden_states=hidden_states,
motion_frames=motion_frames,
encoder_hidden_states=encoder_hidden_states,
is_new_audio=is_new_audio,
update_past_memory=update_past_memory,
)
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = resnet(hidden_states, temb)
if audio_module is not None:
return hidden_states, audio_embedding
else:
return hidden_states
class CrossAttnDownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
cross_attention_dim=1280,
audio_attention_dim=1024,
output_scale_factor=1.0,
downsample_padding=1,
add_downsample=True,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
use_inflated_groupnorm=None,
use_motion_module=None,
motion_module_kwargs=None,
depth=0,
emo_drop_rate=0.3,
):
super().__init__()
resnets = []
attentions = []
audio_modules = []
motion_modules = []
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock3D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
use_inflated_groupnorm=use_inflated_groupnorm,
)
)
if dual_cross_attention:
raise NotImplementedError
attentions.append(
Transformer3DModel(
attn_num_head_channels,
out_channels // attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
)
)
audio_modules.append(
Transformer3DModel(
attn_num_head_channels,
in_channels // attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=audio_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
use_audio_module=True,
depth=depth,
unet_block_name="down",
emo_drop_rate=emo_drop_rate,
)
)
motion_modules.append(
MemoryLinearAttnTemporalModule(
in_channels=out_channels,
**motion_module_kwargs,
)
if use_motion_module
else None
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.audio_modules = nn.ModuleList(audio_modules)
self.motion_modules = nn.ModuleList(motion_modules)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample3D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
ref_feature_list,
temb=None,
encoder_hidden_states=None,
attention_mask=None,
audio_embedding=None,
emotion=None,
uc_mask=None,
is_new_audio=True,
update_past_memory=False,
):
output_states = ()
for i, (resnet, attn, audio_module, motion_module) in enumerate(
zip(self.resnets, self.attentions, self.audio_modules, self.motion_modules)
):
ref_feature = ref_feature_list[i]
ref_feature = ref_feature[0]
ref_feature = rearrange(
ref_feature,
"(b f) (h w) c -> b c f h w",
b=hidden_states.shape[0],
w=hidden_states.shape[-1],
)
ref_img_feature = ref_feature[:, :, :1, :, :]
ref_img_feature = rearrange(
ref_img_feature,
"b c f h w -> (b f) (h w) c",
)
motion_frames = ref_feature[:, :, 1:, :, :]
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
ref_img_feature,
encoder_hidden_states=encoder_hidden_states,
uc_mask=uc_mask,
return_dict=False,
)
if audio_module is not None:
hidden_states, audio_embedding = audio_module(
hidden_states,
ref_img_feature=None,
encoder_hidden_states=audio_embedding,
attention_mask=attention_mask,
return_dict=False,
emotion=emotion,
)
# add motion module
if motion_module is not None:
motion_frames = motion_frames.to(device=hidden_states.device, dtype=hidden_states.dtype)
hidden_states = motion_module(
hidden_states=hidden_states,
motion_frames=motion_frames,
encoder_hidden_states=encoder_hidden_states,
is_new_audio=is_new_audio,
update_past_memory=update_past_memory,
)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
if audio_module is not None:
return hidden_states, output_states, audio_embedding
else:
return hidden_states, output_states
class DownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor=1.0,
add_downsample=True,
downsample_padding=1,
use_inflated_groupnorm=None,
use_motion_module=None,
motion_module_kwargs=None,
):
super().__init__()
resnets = []
motion_modules = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock3D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
use_inflated_groupnorm=use_inflated_groupnorm,
)
)
motion_modules.append(
MemoryLinearAttnTemporalModule(
in_channels=out_channels,
**motion_module_kwargs,
)
if use_motion_module
else None
)
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample3D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=downsample_padding,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
ref_feature_list,
temb=None,
encoder_hidden_states=None,
is_new_audio=True,
update_past_memory=False,
):
output_states = ()
for i, (resnet, motion_module) in enumerate(zip(self.resnets, self.motion_modules)):
ref_feature = ref_feature_list[i]
ref_feature = rearrange(
ref_feature,
"(b f) c h w -> b c f h w",
b=hidden_states.shape[0],
w=hidden_states.shape[-1],
)
motion_frames = ref_feature[:, :, 1:, :, :]
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = resnet(hidden_states, temb)
if motion_module is not None:
hidden_states = motion_module(
hidden_states=hidden_states,
motion_frames=motion_frames,
encoder_hidden_states=encoder_hidden_states,
is_new_audio=is_new_audio,
update_past_memory=update_past_memory,
)
output_states += (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states += (hidden_states,)
return hidden_states, output_states
class CrossAttnUpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
attn_num_head_channels=1,
cross_attention_dim=1280,
audio_attention_dim=1024,
output_scale_factor=1.0,
add_upsample=True,
dual_cross_attention=False,
use_linear_projection=False,
only_cross_attention=False,
upcast_attention=False,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
use_motion_module=None,
use_inflated_groupnorm=None,
motion_module_kwargs=None,
depth=0,
emo_drop_rate=0.3,
is_final_block=False,
):
super().__init__()
resnets = []
attentions = []
audio_modules = []
motion_modules = []
self.has_cross_attention = True
self.attn_num_head_channels = attn_num_head_channels
self.is_final_block = is_final_block
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock3D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
use_inflated_groupnorm=use_inflated_groupnorm,
)
)
if dual_cross_attention:
raise NotImplementedError
attentions.append(
Transformer3DModel(
attn_num_head_channels,
out_channels // attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=cross_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
)
)
audio_modules.append(
Transformer3DModel(
attn_num_head_channels,
in_channels // attn_num_head_channels,
in_channels=out_channels,
num_layers=1,
cross_attention_dim=audio_attention_dim,
norm_num_groups=resnet_groups,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
use_audio_module=True,
depth=depth,
unet_block_name="up",
emo_drop_rate=emo_drop_rate,
is_final_block=(is_final_block and i == num_layers - 1),
)
)
motion_modules.append(
MemoryLinearAttnTemporalModule(
in_channels=out_channels,
**motion_module_kwargs,
)
if use_motion_module
else None
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.audio_modules = nn.ModuleList(audio_modules)
self.motion_modules = nn.ModuleList(motion_modules)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
ref_feature_list,
res_hidden_states_tuple,
temb=None,
encoder_hidden_states=None,
upsample_size=None,
attention_mask=None,
audio_embedding=None,
emotion=None,
uc_mask=None,
is_new_audio=True,
update_past_memory=False,
):
for i, (resnet, attn, audio_module, motion_module) in enumerate(
zip(self.resnets, self.attentions, self.audio_modules, self.motion_modules)
):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
ref_feature = ref_feature_list[i]
ref_feature = ref_feature[0]
ref_feature = rearrange(
ref_feature,
"(b f) (h w) c -> b c f h w",
b=hidden_states.shape[0],
w=hidden_states.shape[-1],
)
ref_img_feature = ref_feature[:, :, :1, :, :]
ref_img_feature = rearrange(
ref_img_feature,
"b c f h w -> (b f) (h w) c",
)
motion_frames = ref_feature[:, :, 1:, :, :]
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = attn(
hidden_states,
ref_img_feature,
encoder_hidden_states=encoder_hidden_states,
uc_mask=uc_mask,
return_dict=False,
)
if audio_module is not None:
hidden_states, audio_embedding = audio_module(
hidden_states,
ref_img_feature=None,
encoder_hidden_states=audio_embedding,
attention_mask=attention_mask,
return_dict=False,
emotion=emotion,
)
# add motion module
if motion_module is not None:
motion_frames = motion_frames.to(device=hidden_states.device, dtype=hidden_states.dtype)
hidden_states = motion_module(
hidden_states,
motion_frames,
encoder_hidden_states,
is_new_audio=is_new_audio,
update_past_memory=update_past_memory,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
if audio_module is not None:
return hidden_states, audio_embedding
else:
return hidden_states
class UpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor=1.0,
add_upsample=True,
use_inflated_groupnorm=None,
use_motion_module=None,
motion_module_kwargs=None,
):
super().__init__()
resnets = []
motion_modules = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
ResnetBlock3D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
use_inflated_groupnorm=use_inflated_groupnorm,
)
)
motion_modules.append(
MemoryLinearAttnTemporalModule(
in_channels=out_channels,
**motion_module_kwargs,
)
if use_motion_module
else None
)
self.resnets = nn.ModuleList(resnets)
self.motion_modules = nn.ModuleList(motion_modules)
if add_upsample:
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
ref_feature_list,
res_hidden_states_tuple,
temb=None,
upsample_size=None,
encoder_hidden_states=None,
is_new_audio=True,
update_past_memory=False,
):
for i, (resnet, motion_module) in enumerate(zip(self.resnets, self.motion_modules)):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
ref_feature = ref_feature_list[i]
ref_feature = rearrange(
ref_feature,
"(b f) c h w -> b c f h w",
b=hidden_states.shape[0],
w=hidden_states.shape[-1],
)
motion_frames = ref_feature[:, :, 1:, :, :]
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = resnet(hidden_states, temb)
if motion_module is not None:
hidden_states = motion_module(
hidden_states=hidden_states,
motion_frames=motion_frames,
encoder_hidden_states=encoder_hidden_states,
is_new_audio=is_new_audio,
update_past_memory=update_past_memory,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states