import gradio as gr import os hf_token = os.environ.get('HF_TOKEN') lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces") from gradio_client import Client client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token) zrscp_client = Client("https://fffiloni-zeroscope--76p9h.hf.space/", hf_token=hf_token) from pydub import AudioSegment def cut_audio(input_path, output_path, max_duration=30000): audio = AudioSegment.from_file(input_path) if len(audio) > max_duration: audio = audio[:max_duration] audio.export(output_path, format="mp3") return output_path def solo_zrscp(prompt): res_vid = zrscp_client.predict( prompt, api_name="/zrscp" ) return res_vid def infer(audio_file): truncated_audio = cut_audio(audio_file, "trunc_audio.mp3") cap_result = lpmc_client( truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component api_name="predict" ) print(cap_result) #summarize_q = f""" #I'll give you a list of music descriptions. Create a summary reflecting the musical ambiance. #Do not processs each segment, but provide a summary for the whole instead. #Here's the list: #{cap_result} #""" #summary_result = client.predict( # summarize_q, # str in 'Message' Textbox component # api_name="/chat_1" #) #print(f"SUMMARY: {summary_result}") llama_q = f""" I'll give you a music description, from i want you to provide an illustrative image description that would fit well with the music. Do not processs each segment or song, but provide a summary for the whole instead. Answer with only one image description. Never do lists. Maximum 77 tokens. Here's the music description : {cap_result} """ result = client.predict( llama_q, # str in 'Message' Textbox component api_name="/predict" ) print(f"Llama2 result: {result}") res_vid = zrscp_client.predict( result, api_name="/zrscp" ) print("Finished") #return cap_result, result, images return res_vid, result, gr.update(visible=True) css = """ #col-container {max-width: 510px; margin-left: auto; margin-right: auto;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""

Music To Zeroscope Video

Sends an audio into LP-Music-Caps to generate a audio caption which is then translated to an illustrative image description with Llama2, and finally run through Zeroscope to generate a 3s video from the audio !

Note: Only the first 30 seconds of your audio will be used for inference.

""") audio_input = gr.Audio(label="Music input", type="filepath", source="upload") infer_btn = gr.Button("Generate Image from Music") #lpmc_cap = gr.Textbox(label="Lp Music Caps caption") llama_trans_cap = gr.Textbox(label="Llama translation", visible=False) vid_result = gr.Video(label="Image Result") tryagain_btn = gr.Button("Try again ?", visible=False) gr.Examples(examples=[["./examples/electronic.mp3"],["./examples/folk.wav"], ["./examples/orchestra.wav"]], fn=infer, inputs=[audio_input], outputs=[vid_result, llama_trans_cap, tryagain_btn], cache_examples=True ) #infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result]) infer_btn.click(fn=infer, inputs=[audio_input], outputs=[vid_result, llama_trans_cap, tryagain_btn]) tryagain_btn.click(fn=solo_zrscp, inputs=[llama_trans_cap], outputs=[vid_result]) demo.queue(max_size=20).launch()