import math import decord from torch.nn import functional as F import torch IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) class DecordInit(object): """Using Decord(https://github.com/dmlc/decord) to initialize the video_reader.""" def __init__(self, num_threads=1): self.num_threads = num_threads self.ctx = decord.cpu(0) def __call__(self, filename): """Perform the Decord initialization. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ reader = decord.VideoReader(filename, ctx=self.ctx, num_threads=self.num_threads) return reader def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'sr={self.sr},' f'num_threads={self.num_threads})') return repr_str def pad_to_multiple(number, ds_stride): remainder = number % ds_stride if remainder == 0: return number else: padding = ds_stride - remainder return number + padding class Collate: def __init__(self, args): self.max_image_size = args.max_image_size self.ae_stride = args.ae_stride self.ae_stride_t = args.ae_stride_t self.patch_size = args.patch_size self.patch_size_t = args.patch_size_t self.num_frames = args.num_frames def __call__(self, batch): unzip = tuple(zip(*batch)) if len(unzip) == 2: batch_tubes, labels = unzip labels = torch.as_tensor(labels).to(torch.long) elif len(unzip) == 3: batch_tubes, input_ids, cond_mask = unzip input_ids = torch.stack(input_ids).squeeze(1) cond_mask = torch.stack(cond_mask).squeeze(1) else: raise NotImplementedError ds_stride = self.ae_stride * self.patch_size t_ds_stride = self.ae_stride_t * self.patch_size_t # pad to max multiple of ds_stride batch_input_size = [i.shape for i in batch_tubes] max_t, max_h, max_w = self.num_frames, \ self.max_image_size, \ self.max_image_size pad_max_t, pad_max_h, pad_max_w = pad_to_multiple(max_t, t_ds_stride), \ pad_to_multiple(max_h, ds_stride), \ pad_to_multiple(max_w, ds_stride) each_pad_t_h_w = [[pad_max_t - i.shape[1], pad_max_h - i.shape[2], pad_max_w - i.shape[3]] for i in batch_tubes] pad_batch_tubes = [F.pad(im, (0, pad_w, 0, pad_h, 0, pad_t), value=0) for (pad_t, pad_h, pad_w), im in zip(each_pad_t_h_w, batch_tubes)] pad_batch_tubes = torch.stack(pad_batch_tubes, dim=0) # make attention_mask max_tube_size = [pad_max_t, pad_max_h, pad_max_w] max_latent_size = [max_tube_size[0] // self.ae_stride_t, max_tube_size[1] // self.ae_stride, max_tube_size[2] // self.ae_stride] max_patchify_latent_size = [max_latent_size[0] // self.patch_size_t, max_latent_size[1] // self.patch_size, max_latent_size[2] // self.patch_size] valid_patchify_latent_size = [[int(math.ceil(i[1] / t_ds_stride)), int(math.ceil(i[2] / ds_stride)), int(math.ceil(i[3] / ds_stride))] for i in batch_input_size] attention_mask = [F.pad(torch.ones(i), (0, max_patchify_latent_size[2] - i[2], 0, max_patchify_latent_size[1] - i[1], 0, max_patchify_latent_size[0] - i[0]), value=0) for i in valid_patchify_latent_size] attention_mask = torch.stack(attention_mask) if len(unzip) == 2: return pad_batch_tubes, labels, attention_mask elif len(unzip) == 3: return pad_batch_tubes, attention_mask, input_ids, cond_mask