File size: 33,991 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from lib.renderer.mesh import load_fit_body, compute_normal_batch
from lib.dataset.body_model import TetraSMPLModel
from lib.common.render import Render
from lib.dataset.mesh_util import *
from lib.pare.pare.utils.geometry import rotation_matrix_to_angle_axis
from lib.net.nerf_util import sample_ray_h36m, get_wsampling_points
from termcolor import colored
import os.path as osp
import numpy as np
from PIL import Image
import random
import os, cv2
import trimesh
import torch
import vedo
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import trimesh
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"

cape_gender = {
    "male": [
        '00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284',
        '03375', '03394'
    ],
    "female": ['00134', '00159', '03223', '03331', '03383']
}



class PIFuDataset():

    def __init__(self, cfg, split='train', vis=False):

        self.split = split
        self.root = cfg.root
        self.bsize = cfg.batch_size
        self.overfit = cfg.overfit

        # for debug, only used in visualize_sampling3D
        self.vis = vis

        self.opt = cfg.dataset
        self.datasets = self.opt.types
        self.input_size = self.opt.input_size
        self.scales = self.opt.scales
        self.workers = cfg.num_threads
        self.prior_type = cfg.net.prior_type

        self.noise_type = self.opt.noise_type
        self.noise_scale = self.opt.noise_scale

        noise_joints = [4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21]

        self.noise_smpl_idx = []
        self.noise_smplx_idx = []

        for idx in noise_joints:
            self.noise_smpl_idx.append(idx * 3)
            self.noise_smpl_idx.append(idx * 3 + 1)
            self.noise_smpl_idx.append(idx * 3 + 2)

            self.noise_smplx_idx.append((idx - 1) * 3)
            self.noise_smplx_idx.append((idx - 1) * 3 + 1)
            self.noise_smplx_idx.append((idx - 1) * 3 + 2)

        self.use_sdf = cfg.sdf
        self.sdf_clip = cfg.sdf_clip

        # [(feat_name, channel_num),...]
        self.in_geo = [item[0] for item in cfg.net.in_geo]
        self.in_nml = [item[0] for item in cfg.net.in_nml]

        self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
        self.in_nml_dim = [item[1] for item in cfg.net.in_nml]

        self.in_total = self.in_geo + self.in_nml
        self.in_total_dim = self.in_geo_dim + self.in_nml_dim

        self.base_keys = ["smpl_verts", "smpl_faces"]
        self.feat_names = cfg.net.smpl_feats

        self.feat_keys = self.base_keys + [f"smpl_{feat_name}" for feat_name in self.feat_names]

        if self.split == 'train':
            self.rotations = np.arange(0, 360, 360 / self.opt.rotation_num).astype(np.int32)
        else:
            self.rotations = range(0, 360, 120)

        self.datasets_dict = {}

        for dataset_id, dataset in enumerate(self.datasets):

            mesh_dir = None
            smplx_dir = None

            dataset_dir = osp.join(self.root, dataset)

            mesh_dir = osp.join(dataset_dir, "scans")
            smplx_dir = osp.join(dataset_dir, "smplx")
            smpl_dir = osp.join(dataset_dir, "smpl")

            self.datasets_dict[dataset] = {
                "smplx_dir": smplx_dir,
                "smpl_dir": smpl_dir,
                "mesh_dir": mesh_dir,
                "scale": self.scales[dataset_id]
            }

            if split == 'train':
                self.datasets_dict[dataset].update(
                    {"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)})
            else:
                self.datasets_dict[dataset].update(
                    {"subjects": np.loadtxt(osp.join(dataset_dir, "test.txt"), dtype=str)})

        self.subject_list = self.get_subject_list(split)
        self.smplx = SMPLX()

        # PIL to tensor
        self.image_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        # PIL to tensor
        self.mask_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.0,), (1.0,))
        ])

        self.device = torch.device(f"cuda:{cfg.gpus[0]}")
        self.render = Render(size=512, device=self.device)

        self.UV_RENDER='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_RENDER'
        self.UV_MASK='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_MASK'
        self.UV_POS='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_POS'
        self.UV_NORMAL='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_NORMAL'
        self.IMAGE_MASK='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/MASK'
        self.PARAM='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/PARAM'
        self.depth='./data/thuman2_36views'

    def render_normal(self, verts, faces):

        # render optimized mesh (normal, T_normal, image [-1,1])
        self.render.load_meshes(verts, faces)
        return self.render.get_rgb_image()

    def get_subject_list(self, split):

        subject_list = []

        for dataset in self.datasets:

            split_txt = osp.join(self.root, dataset, f'{split}.txt')

            if osp.exists(split_txt):
                print(f"load from {split_txt}")
                subject_list += np.loadtxt(split_txt, dtype=str).tolist()
            else:
                full_txt = osp.join(self.root, dataset, 'all.txt')
                print(f"split {full_txt} into train/val/test")

                full_lst = np.loadtxt(full_txt, dtype=str)
                full_lst = [dataset + "/" + item for item in full_lst]
                [train_lst, test_lst, val_lst] = np.split(full_lst, [
                    500,
                    500 + 5,
                ])

                np.savetxt(full_txt.replace("all", "train"), train_lst, fmt="%s")
                np.savetxt(full_txt.replace("all", "test"), test_lst, fmt="%s")
                np.savetxt(full_txt.replace("all", "val"), val_lst, fmt="%s")

                print(f"load from {split_txt}")
                subject_list += np.loadtxt(split_txt, dtype=str).tolist()

        if self.split != 'test':
            subject_list += subject_list[:self.bsize - len(subject_list) % self.bsize]
            print(colored(f"total: {len(subject_list)}", "yellow"))
            random.shuffle(subject_list)

        # subject_list = ["thuman2/0008"]
        return subject_list

    def __len__(self):
        return len(self.subject_list) * len(self.rotations)

    def __getitem__(self, index):

        # only pick the first data if overfitting
        if self.overfit:
            index = 0

        rid = index % len(self.rotations)
        mid = index // len(self.rotations)

        rotation = self.rotations[rid]
        subject = self.subject_list[mid].split("/")[1]
        dataset = self.subject_list[mid].split("/")[0]
        render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])
        if dataset=='thuman2':
            old_folder="/".join([dataset + f"_{self.opt.rotation_num}views_nosideview", subject])
        else:
            old_folder=render_folder
        # add uv map path
        # use pifu dataset
        
        uv_render_path=os.path.join(self.UV_RENDER,subject,'%d_%d_%02d.jpg'%(rotation,0,0))
        uv_mask_path = os.path.join(self.UV_MASK, subject, '%02d.png' % (0))
        uv_pos_path = os.path.join(self.UV_POS, subject, '%02d.exr' % (0))
        uv_normal_path = os.path.join(self.UV_NORMAL, subject, '%02d.png' % (0))
        image_mask_path=os.path.join(self.IMAGE_MASK,subject,'%d_%d_%02d.png'%(rotation,0,0))
        param_path=os.path.join(self.PARAM, subject,'%d_%d_%02d.npy'%(rotation,0,0))
        depth_path=os.path.join(self.depth,subject,"depth_F",'%03d.png'%(rotation))



        # setup paths
        data_dict = {
            'dataset': dataset,
            'subject': subject,
            'rotation': rotation,
            'scale': self.datasets_dict[dataset]["scale"],
            'calib_path': osp.join(self.root, render_folder, 'calib', f'{rotation:03d}.txt'),
            'image_path': osp.join(self.root, render_folder, 'render', f'{rotation:03d}.png'),
            'smpl_path': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
            'vis_path': osp.join(self.root, old_folder, 'vis', f'{rotation:03d}.pt'),
            'uv_render_path': osp.join(self.root, render_folder, 'uv_color', f'{rotation:03d}.png'),
            'uv_mask_path': uv_mask_path,
            'uv_pos_path': uv_pos_path,
            'uv_normal_path': osp.join(self.root, render_folder, 'uv_normal', '%02d.png' % (0)),
            'image_mask_path':image_mask_path,
            'param_path':param_path,
            'depth_path':depth_path,
        }

        if dataset == 'thuman2':
            data_dict.update({
                'mesh_path':
                    osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}/{subject}.obj"),
                'smplx_path':
                    #osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
                    osp.join("./data/thuman2/smplx/", f"{subject}.obj"),
                'smpl_param':
                    osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.pkl"),
                'smplx_param':
                    osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.pkl"),
            })
        elif dataset == 'cape':
            data_dict.update({
                'mesh_path': osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
                'smpl_param': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.npz"),
            })

        # load training data
        data_dict.update(self.load_calib(data_dict))

        # image/normal/depth loader
        for name, channel in zip(self.in_total, self.in_total_dim):

            if f'{name}_path' not in data_dict.keys():
                data_dict.update({
                    f'{name}_path': osp.join(self.root, render_folder, name, f'{rotation:03d}.png')
                })

            # tensor update
            if os.path.exists(data_dict[f'{name}_path']):
                data_dict.update(
                    {name: self.imagepath2tensor(data_dict[f'{name}_path'], channel, inv=False)})
                # if name=='normal_F' and dataset == 'thuman2':
                #     right_angle=(rotation+270)%360
                #     left_angle=(rotation+90)%360
                #     normal_right_path=osp.join(self.root, render_folder, name, f'{right_angle:03d}.png')
                #     normal_left_path=osp.join(self.root, render_folder, name, f'{left_angle:03d}.png')
                #     data_dict.update(
                #         {'normal_R': self.imagepath2tensor(normal_right_path, channel, inv=False)})
                #     data_dict.update(
                #         {'normal_L': self.imagepath2tensor(normal_left_path, channel, inv=False)})
                    
                if name=='T_normal_F' and dataset == 'thuman2':
                    
                    normal_right_path=osp.join(self.root, render_folder, "T_normal_R", f'{rotation:03d}.png')
                    normal_left_path=osp.join(self.root, render_folder, "T_normal_L", f'{rotation:03d}.png')
                    data_dict.update(
                        {'T_normal_R': self.imagepath2tensor(normal_right_path, channel, inv=False)})
                    data_dict.update(
                        {'T_normal_L': self.imagepath2tensor(normal_left_path, channel, inv=False)})

        data_dict.update(self.load_mesh(data_dict))
        
        data_dict.update(
            self.get_sampling_geo(data_dict, is_valid=self.split == "val", is_sdf=self.use_sdf))
        data_dict.update(self.load_smpl(data_dict, self.vis))

        if self.prior_type == 'pamir':
            data_dict.update(self.load_smpl_voxel(data_dict))

        if (self.split != 'test') and (not self.vis):

            del data_dict['verts']
            del data_dict['faces']

        if not self.vis:
            del data_dict['mesh']

        path_keys = [key for key in data_dict.keys() if '_path' in key or '_dir' in key]
        for key in path_keys:
            del data_dict[key]

        return data_dict

    def imagepath2tensor(self, path, channel=3, inv=False):

        rgba = Image.open(path).convert('RGBA')

        # remove CAPE's noisy outliers using OpenCV's inpainting
        if "cape" in path and 'T_' not in path:
            mask = (cv2.imread(path.replace(path.split("/")[-2], "mask"), 0) > 1)
            img = np.asarray(rgba)[:, :, :3]
            fill_mask = ((mask & (img.sum(axis=2) == 0))).astype(np.uint8)
            image = Image.fromarray(
                cv2.inpaint(img * mask[..., None], fill_mask, 3, cv2.INPAINT_TELEA))
            mask = Image.fromarray(mask)
        else:
            mask = rgba.split()[-1]
            image = rgba.convert('RGB')
        image = self.image_to_tensor(image)
        mask = self.mask_to_tensor(mask)
        image = (image * mask)[:channel]

        return (image * (0.5 - inv) * 2.0).float()

    def load_calib(self, data_dict):
        calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
        extrinsic = calib_data[:4, :4]
        intrinsic = calib_data[4:8, :4]
        calib_mat = np.matmul(intrinsic, extrinsic)
        calib_mat = torch.from_numpy(calib_mat).float()
        return {'calib': calib_mat}

    def load_mesh(self, data_dict):

        mesh_path = data_dict['mesh_path']
        scale = data_dict['scale']

        verts, faces = obj_loader(mesh_path)

        mesh = HoppeMesh(verts * scale, faces)

        return {
            'mesh': mesh,
            'verts': torch.as_tensor(verts * scale).float(),
            'faces': torch.as_tensor(faces).long()
        }

    def add_noise(self, beta_num, smpl_pose, smpl_betas, noise_type, noise_scale, type, hashcode):

        np.random.seed(hashcode)

        if type == 'smplx':
            noise_idx = self.noise_smplx_idx
        else:
            noise_idx = self.noise_smpl_idx

        if 'beta' in noise_type and noise_scale[noise_type.index("beta")] > 0.0:
            smpl_betas += (np.random.rand(beta_num) -
                           0.5) * 2.0 * noise_scale[noise_type.index("beta")]
            smpl_betas = smpl_betas.astype(np.float32)

        if 'pose' in noise_type and noise_scale[noise_type.index("pose")] > 0.0:
            smpl_pose[noise_idx] += (np.random.rand(len(noise_idx)) -
                                     0.5) * 2.0 * np.pi * noise_scale[noise_type.index("pose")]
            smpl_pose = smpl_pose.astype(np.float32)
        if type == 'smplx':
            return torch.as_tensor(smpl_pose[None, ...]), torch.as_tensor(smpl_betas[None, ...])
        else:
            return smpl_pose, smpl_betas

    def compute_smpl_verts(self, data_dict, noise_type=None, noise_scale=None):

        dataset = data_dict['dataset']
        smplx_dict = {}

        smplx_param = np.load(data_dict['smplx_param'], allow_pickle=True)
        smplx_pose = smplx_param["body_pose"]  # [1,63]
        smplx_betas = smplx_param["betas"]  # [1,10]
        smplx_pose, smplx_betas = self.add_noise(
            smplx_betas.shape[1],
            smplx_pose[0],
            smplx_betas[0],
            noise_type,
            noise_scale,
            type='smplx',
            hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8))

        smplx_out, _ = load_fit_body(fitted_path=data_dict['smplx_param'],
                                     scale=self.datasets_dict[dataset]['scale'],
                                     smpl_type='smplx',
                                     smpl_gender='male',
                                     noise_dict=dict(betas=smplx_betas, body_pose=smplx_pose))

        smplx_dict.update({
            "type": "smplx",
            "gender": 'male',
            "body_pose": torch.as_tensor(smplx_pose),
            "betas": torch.as_tensor(smplx_betas)
        })

        return smplx_out.vertices, smplx_dict

    def compute_voxel_verts(self, data_dict, noise_type=None, noise_scale=None):

        smpl_param = np.load(data_dict["smpl_param"], allow_pickle=True)

        if data_dict['dataset'] == 'cape':
            pid = data_dict['subject'].split("-")[0]
            gender = "male" if pid in cape_gender["male"] else "female"
            smpl_pose = smpl_param['pose'].flatten()
            smpl_betas = np.zeros((1, 10))
        else:
            gender = 'male'
            smpl_pose = rotation_matrix_to_angle_axis(torch.as_tensor(
                smpl_param["full_pose"][0])).numpy()
            smpl_betas = smpl_param["betas"]

        smpl_path = osp.join(self.smplx.model_dir, f"smpl/SMPL_{gender.upper()}.pkl")
        tetra_path = osp.join(self.smplx.tedra_dir, f"tetra_{gender}_adult_smpl.npz")

        smpl_model = TetraSMPLModel(smpl_path, tetra_path, "adult")

        smpl_pose, smpl_betas = self.add_noise(
            smpl_model.beta_shape[0],
            smpl_pose.flatten(),
            smpl_betas[0],
            noise_type,
            noise_scale,
            type="smpl",
            hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8),
        )

        smpl_model.set_params(pose=smpl_pose.reshape(-1, 3),
                              beta=smpl_betas,
                              trans=smpl_param["transl"])
        if data_dict['dataset'] == 'cape':
            verts = np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) * 100.0
        else:
            verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) *
                     smpl_param["scale"] +
                     smpl_param["translation"]) * self.datasets_dict[data_dict["dataset"]]["scale"]

        faces = (np.loadtxt(
            osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"),
            dtype=np.int32,
        ) - 1)

        pad_v_num = int(8000 - verts.shape[0])
        pad_f_num = int(25100 - faces.shape[0])

        verts = np.pad(verts, ((0, pad_v_num), (0, 0)), mode="constant",
                       constant_values=0.0).astype(np.float32)
        faces = np.pad(faces, ((0, pad_f_num), (0, 0)), mode="constant",
                       constant_values=0.0).astype(np.int32)

        return verts, faces, pad_v_num, pad_f_num

    def densely_sample(self, verts, faces):
        # TODO: subdivided the triangular mesh
        new_vertices,new_faces,index=trimesh.remesh.subdivide(verts,faces)
        
        return new_vertices, torch.LongTensor(new_faces)
        ...

    def load_smpl(self, data_dict, vis=False, densely_sample=False):

        smpl_type = "smplx" if ('smplx_path' in data_dict.keys() and
                                os.path.exists(data_dict['smplx_path'])) else "smpl"
        
        return_dict = {}

        if 'smplx_param' in data_dict.keys() and \
            os.path.exists(data_dict['smplx_param']) and \
                sum(self.noise_scale) > 0.0:
            smplx_verts, smplx_dict = self.compute_smpl_verts(data_dict, self.noise_type,
                                                              self.noise_scale)
            smplx_faces = torch.as_tensor(self.smplx.smplx_faces).long()
            smplx_cmap = torch.as_tensor(np.load(self.smplx.cmap_vert_path)).float()

        else:
            smplx_vis = torch.load(data_dict['vis_path']).float()
            return_dict.update({'smpl_vis': smplx_vis})

            # noise_factor = 20
            # noise = np.random.normal(loc=0, scale=noise_factor)
            smplx_verts = rescale_smpl(data_dict[f"{smpl_type}_path"], scale=100.0)
            smplx_faces = torch.as_tensor(getattr(self.smplx, f"{smpl_type}_faces")).long()
            smplx_cmap = self.smplx.cmap_smpl_vids(smpl_type)

        if densely_sample:
            smplx_verts,smplx_faces=self.densely_sample(smplx_verts,smplx_faces)

        smplx_verts = projection(smplx_verts, data_dict['calib']).float()

        # get smpl_vis
        if "smpl_vis" not in return_dict.keys() and "smpl_vis" in self.feat_keys:
            (xy, z) = torch.as_tensor(smplx_verts).to(self.device).split([2, 1], dim=1)
            smplx_vis = get_visibility(xy, z, torch.as_tensor(smplx_faces).to(self.device).long())
            return_dict['smpl_vis'] = smplx_vis

        if "smpl_norm" not in return_dict.keys() and "smpl_norm" in self.feat_keys:
            # get smpl_norms
            smplx_norms = compute_normal_batch(smplx_verts.unsqueeze(0),
                                               smplx_faces.unsqueeze(0))[0]
            return_dict["smpl_norm"] = smplx_norms

        if "smpl_cmap" not in return_dict.keys() and "smpl_cmap" in self.feat_keys:
            return_dict["smpl_cmap"] = smplx_cmap

        sample_num=smplx_verts.shape[0]
        verts_ids=np.arange(smplx_verts.shape[0])
       
        sample_ids=torch.LongTensor(verts_ids)
        return_dict.update({
            'smpl_verts': smplx_verts,
            'smpl_faces': smplx_faces,
            'smpl_cmap': smplx_cmap,
            'smpl_sample_id':sample_ids,
        })

        if vis:

            (xy, z) = torch.as_tensor(smplx_verts).to(self.device).split([2, 1], dim=1)
            smplx_vis = get_visibility(xy, z, torch.as_tensor(smplx_faces).to(self.device).long())

            T_normal_F, T_normal_B = self.render_normal(
                (smplx_verts * torch.tensor(np.array([1.0, -1.0, 1.0]))).to(self.device),
                smplx_faces.to(self.device))

            return_dict.update({
                "T_normal_F": T_normal_F.squeeze(0),
                "T_normal_B": T_normal_B.squeeze(0)
            })
            query_points = projection(data_dict['samples_geo'], data_dict['calib']).float()

            smplx_sdf, smplx_norm, smplx_cmap, smplx_vis = cal_sdf_batch(
                smplx_verts.unsqueeze(0).to(self.device),
                smplx_faces.unsqueeze(0).to(self.device),
                smplx_cmap.unsqueeze(0).to(self.device),
                smplx_vis.unsqueeze(0).to(self.device),
                query_points.unsqueeze(0).contiguous().to(self.device))

            return_dict.update({
                'smpl_feat':
                    torch.cat((smplx_sdf[0].detach().cpu(), smplx_cmap[0].detach().cpu(),
                               smplx_norm[0].detach().cpu(), smplx_vis[0].detach().cpu()),
                              dim=1)
            })

        return return_dict

    def load_smpl_voxel(self, data_dict):

        smpl_verts, smpl_faces, pad_v_num, pad_f_num = self.compute_voxel_verts(
            data_dict, self.noise_type, self.noise_scale)  # compute using smpl model
        smpl_verts = projection(smpl_verts, data_dict['calib'])

        smpl_verts *= 0.5

        return {
            'voxel_verts': smpl_verts,
            'voxel_faces': smpl_faces,
            'pad_v_num': pad_v_num,
            'pad_f_num': pad_f_num
        }

    def get_sampling_geo(self, data_dict, is_valid=False, is_sdf=False):

        #assert 0
        mesh = data_dict['mesh']
        calib = data_dict['calib']


        # Samples are around the true surface with an offset
        n_samples_surface = 4*self.opt.num_sample_geo
        vert_ids = np.arange(mesh.verts.shape[0])

        samples_surface_ids = np.random.choice(vert_ids, n_samples_surface, replace=True)

        samples_surface = mesh.verts[samples_surface_ids, :]

       
        # Sampling offsets are random noise with constant scale (15cm - 20cm)
        offset = np.random.normal(scale=self.opt.sigma_geo, size=(n_samples_surface, 1))
        samples_surface += mesh.vert_normals[samples_surface_ids, :] * offset

        # samples=np.concatenate([samples_surface], 0)
        # np.random.shuffle(samples)
        # Uniform samples in [-1, 1]
        calib_inv = np.linalg.inv(calib)
        n_samples_space = self.opt.num_sample_geo // 4
        samples_space_img = 2.0 * np.random.rand(n_samples_space, 3) - 1.0
        samples_space = projection(samples_space_img, calib_inv)

        samples = np.concatenate([samples_surface, samples_space], 0)
        np.random.shuffle(samples)

        # labels: in->1.0; out->0.0.
        inside = mesh.contains(samples)
        inside_samples = samples[inside >= 0.5]
        outside_samples = samples[inside < 0.5]

        nin = inside_samples.shape[0]

        if nin > self.opt.num_sample_geo // 2:
            inside_samples = inside_samples[:self.opt.num_sample_geo // 2]
            outside_samples = outside_samples[:self.opt.num_sample_geo // 2]
        else:
            outside_samples = outside_samples[:(self.opt.num_sample_geo - nin)]

        samples = np.concatenate([inside_samples, outside_samples])
        labels = np.concatenate(
            [np.ones(inside_samples.shape[0]),
             np.zeros(outside_samples.shape[0])])

        samples = torch.from_numpy(samples).float()
        labels = torch.from_numpy(labels).float()
        
        

        # sample color
        if not self.datasets[0]=='cape':
            # get color
            uv_render_path = data_dict['uv_render_path']
            uv_mask_path = data_dict['uv_mask_path']
            uv_pos_path = data_dict['uv_pos_path']
            uv_normal_path = data_dict['uv_normal_path']

            # Segmentation mask for the uv render.
            # [H, W] bool
            uv_mask = cv2.imread(uv_mask_path)
            uv_mask = uv_mask[:, :, 0] != 0
            # UV render. each pixel is the color of the point.
            # [H, W, 3] 0 ~ 1 float
            uv_render = cv2.imread(uv_render_path)
            uv_render = cv2.cvtColor(uv_render, cv2.COLOR_BGR2RGB) / 255.0

            # Normal render. each pixel is the surface normal of the point.
            # [H, W, 3] -1 ~ 1 float
            uv_normal = cv2.imread(uv_normal_path)
            uv_normal = cv2.cvtColor(uv_normal, cv2.COLOR_BGR2RGB) / 255.0
            uv_normal = 2.0 * uv_normal - 1.0

            # Position render. each pixel is the xyz coordinates of the point
            uv_pos = cv2.imread(uv_pos_path, 2 | 4)[:, :, ::-1]
            
            ### In these few lines we flattern the masks, positions, and normals
            uv_mask = uv_mask.reshape((-1))          # 512*512
            uv_pos = uv_pos.reshape((-1, 3))
            uv_render = uv_render.reshape((-1, 3))   # 512*512,3
            uv_normal = uv_normal.reshape((-1, 3))

            surface_points = uv_pos[uv_mask]
            surface_colors = uv_render[uv_mask]
            surface_normal = uv_normal[uv_mask]

            # Samples are around the true surface with an offset
            n_samples_surface = self.opt.num_sample_color

            if n_samples_space>surface_points.shape[0]:
                print(surface_points.shape[0])
                print( uv_pos_path)
                assert 0
            sample_list = random.sample(range(0, surface_points.shape[0] - 1), n_samples_surface)
            surface_points=surface_points[sample_list].T
            surface_colors=surface_colors[sample_list].T
            surface_normal=surface_normal[sample_list].T

            # Samples are around the true surface with an offset
            normal = torch.Tensor(surface_normal).float()
            samples_surface = torch.Tensor(surface_points).float() \
                    + torch.normal(mean=torch.zeros((1, normal.size(1))), std=self.opt.sigma_color).expand_as(normal) * normal

            sample_color=samples_surface.T
            rgbs_color=(surface_colors-0.5)*2   # range -1 - 1
            rgbs_color=rgbs_color.T
            colors = torch.from_numpy(rgbs_color).float()

            

          
        # center.unsqueeze(0).float()

            return {'samples_geo': samples, 'labels_geo': labels,"samples_color":sample_color,"color_labels":colors}
        else:
            return {'samples_geo': samples, 'labels_geo': labels}
    def get_param(self,data_dict):
        W=512
        H=512
        
        param_path = data_dict['param_path']
        # loading calibration data
        param = np.load(param_path, allow_pickle=True)
        # pixel unit / world unit
        ortho_ratio = param.item().get('ortho_ratio')
        # world unit / model unit
        scale = param.item().get('scale')
        # camera center world coordinate
        center = param.item().get('center')
        # model rotation
        R = param.item().get('R')
        translate = -np.matmul(R, center).reshape(3, 1) 
        extrinsic = np.concatenate([R, translate], axis=1)
        extrinsic = np.concatenate([extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)

       
        # Match camera space to image pixel space
        scale_intrinsic = np.identity(4)
        scale_intrinsic[0, 0] = scale / ortho_ratio
        scale_intrinsic[1, 1] = -scale / ortho_ratio
        scale_intrinsic[2, 2] = scale / ortho_ratio
        # Match image pixel space to image uv space
        uv_intrinsic = np.identity(4)
        uv_intrinsic[0, 0] = 1.0 / float(W // 2)
        uv_intrinsic[1, 1] = 1.0 / float(W // 2)
        uv_intrinsic[2, 2] = 1.0 / float(W // 2)
       

        return scale_intrinsic[:3,:3],R,translate.numpy(),center

    def get_extrinsics(self,data_dict):
        calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
        extrinsic = calib_data[:4, :4]
        intrinsic = calib_data[4:8, :4]
        return intrinsic.astype(np.float32)

    def visualize_sampling3D(self, data_dict, mode='vis'):

        # create plot
        vp = vedo.Plotter(title="", size=(1500, 1500), axes=0, bg='white')
        vis_list = []

        assert mode in ['vis', 'sdf', 'normal', 'cmap', 'occ']

        # sdf-1 cmap-3 norm-3 vis-1
        if mode == 'vis':
            labels = data_dict[f'smpl_feat'][:, [-1]]  # visibility
            colors = np.concatenate([labels, labels, labels], axis=1)
        elif mode == 'occ':
            labels = data_dict[f'labels_geo'][..., None]  # occupancy
            colors = np.concatenate([labels, labels, labels], axis=1)
        elif mode == 'sdf':
            labels = data_dict[f'smpl_feat'][:, [0]]  # sdf
            labels -= labels.min()
            labels /= labels.max()
            colors = np.concatenate([labels, labels, labels], axis=1)
        elif mode == 'normal':
            labels = data_dict[f'smpl_feat'][:, -4:-1]  # normal
            colors = (labels + 1.0) * 0.5
        elif mode == 'cmap':
            labels = data_dict[f'smpl_feat'][:, -7:-4]  # colormap
            colors = np.array(labels)

        points = projection(data_dict['samples_geo'], data_dict['calib'])
        verts = projection(data_dict['verts'], data_dict['calib'])
        points[:, 1] *= -1
        
        verts[:, 1] *= -1
        
        # create a mesh
        mesh = trimesh.Trimesh(verts, data_dict['faces'], process=True)
        mesh.visual.vertex_colors = [128.0, 128.0, 128.0, 255.0]
        vis_list.append(mesh)

        if 'voxel_verts' in data_dict.keys():
            print(colored("voxel verts", "green"))
            voxel_verts = data_dict['voxel_verts'] * 2.0
            voxel_faces = data_dict['voxel_faces']
            voxel_verts[:, 1] *= -1
            voxel = trimesh.Trimesh(voxel_verts,
                                    voxel_faces[:, [0, 2, 1]],
                                    process=False,
                                    maintain_order=True)
            voxel.visual.vertex_colors = [0.0, 128.0, 0.0, 255.0]
            vis_list.append(voxel)

        if 'smpl_verts' in data_dict.keys():
            print(colored("smpl verts", "green"))
            smplx_verts = data_dict['smpl_verts']
            smplx_faces = data_dict['smpl_faces']
            smplx_verts[:, 1] *= -1
            smplx = trimesh.Trimesh(smplx_verts,
                                    smplx_faces[:, [0, 2, 1]],
                                    process=False,
                                    maintain_order=True)
            smplx.visual.vertex_colors = [128.0, 128.0, 0.0, 255.0]
            vis_list.append(smplx)

        # create a picure
        img_pos = [1.0, 0.0, -1.0,-1.0,1.0]
        for img_id, img_key in enumerate(['normal_F', 'image', 'T_normal_B','T_normal_L','T_normal_R']):
            image_arr = (data_dict[img_key].detach().cpu().permute(1, 2, 0).numpy() +
                         1.0) * 0.5 * 255.0
            image_dim = image_arr.shape[0]

            if img_id==3:
                image=vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, -1.0).rotateY(90)
            elif img_id==4:
                image=vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, 1.0).rotateY(90)
            else:
                image = vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, img_pos[img_id])
            vis_list.append(image)

        # create a pointcloud
        pc = vedo.Points(points, r=1)
        vis_list.append(pc)

        vp.show(*vis_list, bg="white", axes=1.0, interactive=True)