Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,299 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import torch
import io
import numpy as np
from pathlib import Path
import re
import trimesh
import imageio
import os
from scipy.spatial.transform import Rotation as R
def to_numpy(*args):
def convert(a):
if isinstance(a,torch.Tensor):
return a.detach().cpu().numpy()
assert a is None or isinstance(a,np.ndarray)
return a
return convert(args[0]) if len(args)==1 else tuple(convert(a) for a in args)
def save_obj(
vertices,
faces,
filename:Path,
colors=None,
):
filename = Path(filename)
bytes_io = io.BytesIO()
if colors is not None:
vertices = torch.cat((vertices, colors),dim=-1)
np.savetxt(bytes_io, vertices.detach().cpu().numpy(), 'v %.4f %.4f %.4f %.4f %.4f %.4f')
else:
np.savetxt(bytes_io, vertices.detach().cpu().numpy(), 'v %.4f %.4f %.4f')
np.savetxt(bytes_io, faces.cpu().numpy() + 1, 'f %d %d %d') #1-based indexing
obj_path = filename.with_suffix('.obj')
with open(obj_path, 'w') as file:
file.write(bytes_io.getvalue().decode('UTF-8'))
def save_glb(
filename,
v_pos,
t_pos_idx,
v_nrm=None,
v_tex=None,
t_tex_idx=None,
v_rgb=None,
) -> str:
mesh = trimesh.Trimesh(
vertices=v_pos, faces=t_pos_idx, vertex_normals=v_nrm, vertex_colors=v_rgb
)
# not tested
if v_tex is not None:
mesh.visual = trimesh.visual.TextureVisuals(uv=v_tex)
mesh.export(filename)
def load_obj(
filename:Path,
device='cuda',
load_color=False
) -> tuple[torch.Tensor,torch.Tensor]:
filename = Path(filename)
obj_path = filename.with_suffix('.obj')
with open(obj_path) as file:
obj_text = file.read()
num = r"([0-9\.\-eE]+)"
if load_color:
v = re.findall(f"(v {num} {num} {num} {num} {num} {num})",obj_text)
else:
v = re.findall(f"(v {num} {num} {num})",obj_text)
vertices = np.array(v)[:,1:].astype(np.float32)
all_faces = []
f = re.findall(f"(f {num} {num} {num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,1)[...,:1])
f = re.findall(f"(f {num}/{num} {num}/{num} {num}/{num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,2)[...,:2])
f = re.findall(f"(f {num}/{num}/{num} {num}/{num}/{num} {num}/{num}/{num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,3)[...,:2])
f = re.findall(f"(f {num}//{num} {num}//{num} {num}//{num})",obj_text)
if f:
all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,2)[...,:1])
all_faces = np.concatenate(all_faces,axis=0)
all_faces -= 1 #1-based indexing
faces = all_faces[:,:,0]
vertices = torch.tensor(vertices,dtype=torch.float32,device=device)
faces = torch.tensor(faces,dtype=torch.long,device=device)
return vertices,faces
def save_ply(
filename:Path,
vertices:torch.Tensor, #V,3
faces:torch.Tensor, #F,3
vertex_colors:torch.Tensor=None, #V,3
vertex_normals:torch.Tensor=None, #V,3
):
filename = Path(filename).with_suffix('.ply')
vertices,faces,vertex_colors = to_numpy(vertices,faces,vertex_colors)
assert np.all(np.isfinite(vertices)) and faces.min()==0 and faces.max()==vertices.shape[0]-1
header = 'ply\nformat ascii 1.0\n'
header += 'element vertex ' + str(vertices.shape[0]) + '\n'
header += 'property double x\n'
header += 'property double y\n'
header += 'property double z\n'
if vertex_normals is not None:
header += 'property double nx\n'
header += 'property double ny\n'
header += 'property double nz\n'
if vertex_colors is not None:
assert vertex_colors.shape[0] == vertices.shape[0]
color = (vertex_colors*255).astype(np.uint8)
header += 'property uchar red\n'
header += 'property uchar green\n'
header += 'property uchar blue\n'
header += 'element face ' + str(faces.shape[0]) + '\n'
header += 'property list int int vertex_indices\n'
header += 'end_header\n'
with open(filename, 'w') as file:
file.write(header)
for i in range(vertices.shape[0]):
s = f"{vertices[i,0]} {vertices[i,1]} {vertices[i,2]}"
if vertex_normals is not None:
s += f" {vertex_normals[i,0]} {vertex_normals[i,1]} {vertex_normals[i,2]}"
if vertex_colors is not None:
s += f" {color[i,0]:03d} {color[i,1]:03d} {color[i,2]:03d}"
file.write(s+'\n')
for i in range(faces.shape[0]):
file.write(f"3 {faces[i,0]} {faces[i,1]} {faces[i,2]}\n")
full_verts = vertices[faces] #F,3,3
def save_images(
images:torch.Tensor, #B,H,W,CH
dir:Path,
):
dir = Path(dir)
dir.mkdir(parents=True,exist_ok=True)
if images.shape[-1]==1:
images = images.repeat(1,1,1,3)
for i in range(images.shape[0]):
imageio.imwrite(dir/f'{i:02d}.png',(images.detach()[i,:,:,:3]*255).clamp(max=255).type(torch.uint8).cpu().numpy())
def normalize_scene(vertices):
bbox_min, bbox_max = vertices.min(axis=0)[0], vertices.max(axis=0)[0]
offset = -(bbox_min + bbox_max) / 2
vertices = vertices + offset
# print(offset)
dxyz = bbox_max - bbox_min
dist = torch.sqrt(dxyz[0]**2+ dxyz[1]**2+dxyz[2]**2)
scale = 1. / dist
# print(scale)
vertices *= scale
return vertices
def normalize_vertices(
vertices:torch.Tensor, #V,3
):
"""shift and resize mesh to fit into a unit sphere"""
vertices -= (vertices.min(dim=0)[0] + vertices.max(dim=0)[0]) / 2
vertices /= torch.norm(vertices, dim=-1).max()
return vertices
def laplacian(
num_verts:int,
edges: torch.Tensor #E,2
) -> torch.Tensor: #sparse V,V
"""create sparse Laplacian matrix"""
V = num_verts
E = edges.shape[0]
#adjacency matrix,
idx = torch.cat([edges, edges.fliplr()], dim=0).type(torch.long).T # (2, 2*E)
ones = torch.ones(2*E, dtype=torch.float32, device=edges.device)
A = torch.sparse.FloatTensor(idx, ones, (V, V))
#degree matrix
deg = torch.sparse.sum(A, dim=1).to_dense()
idx = torch.arange(V, device=edges.device)
idx = torch.stack([idx, idx], dim=0)
D = torch.sparse.FloatTensor(idx, deg, (V, V))
return D - A
def _translation(x, y, z, device):
return torch.tensor([[1., 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]],device=device) #4,4
def make_round_views(view_nums, scale=2., device='cuda'):
w2c = []
ortho_scale = scale/2
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
for i in reversed(range(view_nums)):
tmp = np.eye(4)
rot = R.from_euler('xyz', [0, 360/view_nums*i-180, 0], degrees=True).as_matrix()
rot[:, 2] *= -1
tmp[:3, :3] = rot
tmp[2, 3] = -1.8
w2c.append(tmp)
w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
projection = torch.from_numpy(projection).float().to(device=device)
return w2c, projection
def make_star_views(az_degs, pol_degs, scale=2., device='cuda'):
w2c = []
ortho_scale = scale/2
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
for pol in pol_degs:
for az in az_degs:
tmp = np.eye(4)
rot = R.from_euler('xyz', [0, az-180, 0], degrees=True).as_matrix()
rot[:, 2] *= -1
rot_z = R.from_euler('xyz', [pol, 0, 0], degrees=True).as_matrix()
rot = rot_z @ rot
tmp[:3, :3] = rot
tmp[2, 3] = -1.8
w2c.append(tmp)
w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
projection = torch.from_numpy(projection).float().to(device=device)
return w2c, projection
# def make_star_cameras(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'):
# if r is None:
# r = 1/distance
# A = az_count
# P = pol_count
# C = A * P
# phi = torch.arange(0,A) * (2*torch.pi/A)
# phi_rot = torch.eye(3,device=device)[None,None].expand(A,1,3,3).clone()
# phi_rot[:,0,2,2] = phi.cos()
# phi_rot[:,0,2,0] = -phi.sin()
# phi_rot[:,0,0,2] = phi.sin()
# phi_rot[:,0,0,0] = phi.cos()
# theta = torch.arange(1,P+1) * (torch.pi/(P+1)) - torch.pi/2
# theta_rot = torch.eye(3,device=device)[None,None].expand(1,P,3,3).clone()
# theta_rot[0,:,1,1] = theta.cos()
# theta_rot[0,:,1,2] = -theta.sin()
# theta_rot[0,:,2,1] = theta.sin()
# theta_rot[0,:,2,2] = theta.cos()
# mv = torch.empty((C,4,4), device=device)
# mv[:] = torch.eye(4, device=device)
# mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(C,3,3)
# mv = _translation(0, 0, -distance, device) @ mv
# print(mv[:, :3, 3])
# return mv, _projection(r, device)
def get_ortho_projection_matrix(left, right, bottom, top, near, far):
projection_matrix = np.zeros((4, 4), dtype=np.float32)
projection_matrix[0, 0] = 2.0 / (right - left)
projection_matrix[1, 1] = -2.0 / (top - bottom) # add a negative sign here as the y axis is flipped in nvdiffrast output
projection_matrix[2, 2] = -2.0 / (far - near)
projection_matrix[0, 3] = -(right + left) / (right - left)
projection_matrix[1, 3] = -(top + bottom) / (top - bottom)
projection_matrix[2, 3] = -(far + near) / (far - near)
projection_matrix[3, 3] = 1.0
return projection_matrix
def _projection(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True):
if l is None:
l = -r
if t is None:
t = r
if b is None:
b = -t
p = torch.zeros([4,4],device=device)
p[0,0] = 2*n/(r-l)
p[0,2] = (r+l)/(r-l)
p[1,1] = 2*n/(t-b) * (-1 if flip_y else 1)
p[1,2] = (t+b)/(t-b)
p[2,2] = -(f+n)/(f-n)
p[2,3] = -(2*f*n)/(f-n)
p[3,2] = -1
return p #4,4
def get_perspective_projection_matrix(fov, aspect=1.0, near=0.1, far=100.0):
tan_half_fovy = torch.tan(torch.deg2rad(fov/2))
projection_matrix = torch.zeros(4, 4)
projection_matrix[0, 0] = 1 / (aspect * tan_half_fovy)
projection_matrix[1, 1] = -1 / tan_half_fovy
projection_matrix[2, 2] = -(far + near) / (far - near)
projection_matrix[2, 3] = -2 * far * near / (far - near)
projection_matrix[3, 2] = -1
def make_sparse_camera(cam_path, scale=4., views=None, device='cuda', mode='ortho'):
if mode == 'ortho':
ortho_scale = scale/2
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
else:
npy_data = np.load(os.path.join(cam_path, f'{i:03d}.npy'), allow_pickle=True).item()
fov = npy_data['fov']
projection = get_perspective_projection_matrix(fov, aspect=1.0, near=0.1, far=100.0)
# projection = _projection(r=1/1.5, device=device, n=0.1, f=100)
# for view in ['front', 'right', 'back', 'left']:
# tmp = np.loadtxt(os.path.join(cam_path, f'{view}_RT.txt'))
# rot = tmp[:, [0, 2, 1]]
# rot[:, 2] *= -1
# tmp[:3, :3] = rot
# tmp = np.concatenate([tmp, np.array([[0, 0, 0, 1]])], axis=0)
# c2w = np.linalg.inv(tmp)
# w2c.append(np.concatenate([tmp, np.array([[0, 0, 0, 1]])], axis=0))
'''
world :
z
|
|____y
/
/
x
camera:(opencv)
z
/
/____x
|
|
y
'''
if views is None:
views = [0, 1, 2, 4, 6, 7]
w2c = []
for i in views:
npy_data = np.load(os.path.join(cam_path, f'{i:03d}.npy'), allow_pickle=True).item()
w2c_cv = npy_data['extrinsic']
w2c_cv = np.concatenate([w2c_cv, np.array([[0, 0, 0, 1]])], axis=0)
c2w_cv = np.linalg.inv(w2c_cv)
c2w_gl = c2w_cv[[1, 2, 0, 3], :] # invert world coordinate, y->x, z->y, x->z
c2w_gl[:3, 1:3] *= -1 # opencv->opengl, flip y and z
w2c_gl = np.linalg.inv(c2w_gl)
w2c.append(w2c_gl)
# special pose for test
# w2c = np.eye(4)
# rot = R.from_euler('xyz', [0, 0, 0], degrees=True).as_matrix()
# w2c[:3, :3] = rot
# w2c[2, 3] = -1.5
w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
projection = torch.from_numpy(projection).float().to(device=device)
return w2c, projection
def make_sphere(level:int=2,radius=1.,device='cuda') -> tuple[torch.Tensor,torch.Tensor]:
sphere = trimesh.creation.icosphere(subdivisions=level, radius=radius, color=np.array([0.5, 0.5, 0.5]))
vertices = torch.tensor(sphere.vertices, device=device, dtype=torch.float32) * radius
# print(vertices.shape)
# exit()
faces = torch.tensor(sphere.faces, device=device, dtype=torch.long)
colors = torch.tensor(sphere.visual.vertex_colors[..., :3], device=device, dtype=torch.float32)
return vertices, faces, colors |