File size: 7,925 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from lib.dataset.mesh_util import projection
from lib.common.render import Render
import numpy as np
import torch
import os.path as osp
from torchvision.utils import make_grid
from pytorch3d.io import IO
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.loss.point_mesh_distance import _PointFaceDistance
from pytorch3d.structures import Pointclouds
from PIL import Image


def point_mesh_distance(meshes, pcls):

    if len(meshes) != len(pcls):
        raise ValueError("meshes and pointclouds must be equal sized batches")
    N = len(meshes)

    # packed representation for pointclouds
    points = pcls.points_packed()  # (P, 3)
    points_first_idx = pcls.cloud_to_packed_first_idx()
    max_points = pcls.num_points_per_cloud().max().item()

    # packed representation for faces
    verts_packed = meshes.verts_packed()
    faces_packed = meshes.faces_packed()
    tris = verts_packed[faces_packed]  # (T, 3, 3)
    tris_first_idx = meshes.mesh_to_faces_packed_first_idx()

    # point to face distance: shape (P,)
    point_to_face = _PointFaceDistance.apply(points, points_first_idx, tris,
                                             tris_first_idx, max_points, 5e-3)

    # weight each example by the inverse of number of points in the example
    point_to_cloud_idx = pcls.packed_to_cloud_idx()  # (sum(P_i),)
    num_points_per_cloud = pcls.num_points_per_cloud()  # (N,)
    weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx)
    weights_p = 1.0 / weights_p.float()
    point_to_face = torch.sqrt(point_to_face) * weights_p
    point_dist = point_to_face.sum() / N

    return point_dist


class Evaluator:

    def __init__(self, device):

        self.render = Render(size=512, device=device)
        self.device = device

    def set_mesh(self, result_dict):

        for k, v in result_dict.items():
            setattr(self, k, v)

        self.verts_pr -= self.recon_size / 2.0
        self.verts_pr /= self.recon_size / 2.0
        self.verts_gt = projection(self.verts_gt, self.calib)
        self.verts_gt[:, 1] *= -1

        self.src_mesh = self.render.VF2Mesh(self.verts_pr, self.faces_pr)
        self.tgt_mesh = self.render.VF2Mesh(self.verts_gt, self.faces_gt)

    def calculate_normal_consist(self, normal_path):

        self.render.meshes = self.src_mesh
        src_normal_imgs = self.render.get_rgb_image(cam_ids=[ 0,1,2, 3],
                                                    bg='black')
        self.render.meshes = self.tgt_mesh
        tgt_normal_imgs = self.render.get_rgb_image(cam_ids=[0,1,2, 3],
                                                    bg='black')
        
        src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4,padding=0)  # [0,1]
        tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4,padding=0)  # [0,1]
        src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
        tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)

        src_norm[src_norm == 0.0] = 1.0
        tgt_norm[tgt_norm == 0.0] = 1.0

        src_normal_arr /= src_norm
        tgt_normal_arr /= tgt_norm

        src_normal_arr = (src_normal_arr + 1.0) * 0.5
        tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5
        error = ((
                (src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4
        #print('normal error:', error)

        normal_img = Image.fromarray(
                (torch.cat([src_normal_arr, tgt_normal_arr], dim=1).permute(
                    1, 2, 0).detach().cpu().numpy() * 255.0).astype(np.uint8))
        normal_img.save(normal_path)
        
        error_list = []
        if len(src_normal_imgs) > 4:
            for i in range(len(src_normal_imgs)):
                src_normal_arr = src_normal_imgs[i]  # Get each source normal image
                tgt_normal_arr = tgt_normal_imgs[i]  # Get corresponding target normal image

                src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
                tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)

                src_norm[src_norm == 0.0] = 1.0
                tgt_norm[tgt_norm == 0.0] = 1.0

                src_normal_arr /= src_norm
                tgt_normal_arr /= tgt_norm

                src_normal_arr = (src_normal_arr + 1.0) * 0.5
                tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5

                error = ((src_normal_arr - tgt_normal_arr) ** 2).sum(dim=0).mean() * 4.0
                error_list.append(error)

               
            return error_list
        else:
            src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4,padding=0)  # [0,1]
            tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4,padding=0)  # [0,1]
            src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
            tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)

            src_norm[src_norm == 0.0] = 1.0
            tgt_norm[tgt_norm == 0.0] = 1.0

            src_normal_arr /= src_norm
            tgt_normal_arr /= tgt_norm

            # sim_mask = self.get_laplacian_2d(tgt_normal_arr).to(self.device)

            src_normal_arr = (src_normal_arr + 1.0) * 0.5
            tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5

            error = ((
                (src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4
            #print('normal error:', error)
            return error


    def export_mesh(self, dir, name):

        IO().save_mesh(self.src_mesh, osp.join(dir, f"{name}_src.obj"))
        IO().save_mesh(self.tgt_mesh, osp.join(dir, f"{name}_tgt.obj"))

    def calculate_chamfer_p2s(self, num_samples=1000):

        tgt_points = Pointclouds(
            sample_points_from_meshes(self.tgt_mesh, num_samples))
        src_points = Pointclouds(
            sample_points_from_meshes(self.src_mesh, num_samples))
        p2s_dist = point_mesh_distance(self.src_mesh, tgt_points) * 100.0
        chamfer_dist = (point_mesh_distance(self.tgt_mesh, src_points) * 100.0
                        + p2s_dist) * 0.5

        return chamfer_dist, p2s_dist

    def calc_acc(self, output, target, thres=0.5, use_sdf=False):

        # # remove the surface points with thres
        # non_surf_ids = (target != thres)
        # output = output[non_surf_ids]
        # target = target[non_surf_ids]

        with torch.no_grad():
            output = output.masked_fill(output < thres, 0.0)
            output = output.masked_fill(output > thres, 1.0)

            if use_sdf:
                target = target.masked_fill(target < thres, 0.0)
                target = target.masked_fill(target > thres, 1.0)

            acc = output.eq(target).float().mean()

            # iou, precison, recall
            output = output > thres
            target = target > thres

            union = output | target
            inter = output & target

            _max = torch.tensor(1.0).to(output.device)

            union = max(union.sum().float(), _max)
            true_pos = max(inter.sum().float(), _max)
            vol_pred = max(output.sum().float(), _max)
            vol_gt = max(target.sum().float(), _max)

            return acc, true_pos / union, true_pos / vol_pred, true_pos / vol_gt