File size: 12,522 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from torchvision import models
import torch
from torch.nn import init
import torch.nn as nn
import torch.nn.functional as F
import functools
from torch.autograd import grad


def gradient(inputs, outputs):
    d_points = torch.ones_like(outputs,
                               requires_grad=False,
                               device=outputs.device)
    points_grad = grad(outputs=outputs,
                       inputs=inputs,
                       grad_outputs=d_points,
                       create_graph=True,
                       retain_graph=True,
                       only_inputs=True,
                       allow_unused=True)[0]
    return points_grad


# def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
#     "3x3 convolution with padding"
#     return nn.Conv2d(in_planes, out_planes, kernel_size=3,
#                      stride=strd, padding=padding, bias=bias)


def conv3x3(in_planes,
            out_planes,
            kernel=3,
            strd=1,
            dilation=1,
            padding=1,
            bias=False):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=kernel,
                     dilation=dilation,
                     stride=strd,
                     padding=padding,
                     bias=bias)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=1,
                     stride=stride,
                     bias=False)


def init_weights(net, init_type='normal', init_gain=0.02):
    """Initialize network weights.

    Parameters:
        net (network)   -- network to be initialized
        init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        init_gain (float)    -- scaling factor for normal, xavier and orthogonal.

    We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
    work better for some applications. Feel free to try yourself.
    """

    def init_func(m):  # define the initialization function
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1
                                     or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError(
                    'initialization method [%s] is not implemented' %
                    init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find(
                'BatchNorm2d'
        ) != -1:  # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)

    # print('initialize network with %s' % init_type)
    net.apply(init_func)  # apply the initialization function <init_func>


def init_net(net, init_type='xavier', init_gain=0.02, gpu_ids=[]):
    """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
    Parameters:
        net (network)      -- the network to be initialized
        init_type (str)    -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        gain (float)       -- scaling factor for normal, xavier and orthogonal.
        gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2

    Return an initialized network.
    """
    if len(gpu_ids) > 0:
        assert (torch.cuda.is_available())
        net = torch.nn.DataParallel(net)  # multi-GPUs
    init_weights(net, init_type, init_gain=init_gain)
    return net


def imageSpaceRotation(xy, rot):
    '''
    args:
        xy: (B, 2, N) input
        rot: (B, 2) x,y axis rotation angles

    rotation center will be always image center (other rotation center can be represented by additional z translation)
    '''
    disp = rot.unsqueeze(2).sin().expand_as(xy)
    return (disp * xy).sum(dim=1)


def cal_gradient_penalty(netD,
                         real_data,
                         fake_data,
                         device,
                         type='mixed',
                         constant=1.0,
                         lambda_gp=10.0):
    """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028

    Arguments:
        netD (network)              -- discriminator network
        real_data (tensor array)    -- real images
        fake_data (tensor array)    -- generated images from the generator
        device (str)                -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
        type (str)                  -- if we mix real and fake data or not [real | fake | mixed].
        constant (float)            -- the constant used in formula ( | |gradient||_2 - constant)^2
        lambda_gp (float)           -- weight for this loss

    Returns the gradient penalty loss
    """
    if lambda_gp > 0.0:
        # either use real images, fake images, or a linear interpolation of two.
        if type == 'real':
            interpolatesv = real_data
        elif type == 'fake':
            interpolatesv = fake_data
        elif type == 'mixed':
            alpha = torch.rand(real_data.shape[0], 1)
            alpha = alpha.expand(
                real_data.shape[0],
                real_data.nelement() //
                real_data.shape[0]).contiguous().view(*real_data.shape)
            alpha = alpha.to(device)
            interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
        else:
            raise NotImplementedError('{} not implemented'.format(type))
        interpolatesv.requires_grad_(True)
        disc_interpolates = netD(interpolatesv)
        gradients = torch.autograd.grad(
            outputs=disc_interpolates,
            inputs=interpolatesv,
            grad_outputs=torch.ones(disc_interpolates.size()).to(device),
            create_graph=True,
            retain_graph=True,
            only_inputs=True)
        gradients = gradients[0].view(real_data.size(0), -1)  # flat the data
        gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant)**
                            2).mean() * lambda_gp  # added eps
        return gradient_penalty, gradients
    else:
        return 0.0, None


def get_norm_layer(norm_type='instance'):
    """Return a normalization layer
    Parameters:
        norm_type (str) -- the name of the normalization layer: batch | instance | none
    For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
    For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
    """
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d,
                                       affine=True,
                                       track_running_stats=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d,
                                       affine=False,
                                       track_running_stats=False)
    elif norm_type == 'group':
        norm_layer = functools.partial(nn.GroupNorm, 32)
    elif norm_type == 'none':
        norm_layer = None
    else:
        raise NotImplementedError('normalization layer [%s] is not found' %
                                  norm_type)
    return norm_layer


class Flatten(nn.Module):

    def forward(self, input):
        return input.view(input.size(0), -1)


class ConvBlock(nn.Module):

    def __init__(self, in_planes, out_planes, opt):
        super(ConvBlock, self).__init__()
        [k, s, d, p] = opt.conv3x3
        self.conv1 = conv3x3(in_planes, int(out_planes / 2), k, s, d, p)
        self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), k, s, d,
                             p)
        self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), k, s, d,
                             p)

        if opt.norm == 'batch':
            self.bn1 = nn.BatchNorm2d(in_planes)
            self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
            self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
            self.bn4 = nn.BatchNorm2d(in_planes)
        elif opt.norm == 'group':
            self.bn1 = nn.GroupNorm(32, in_planes)
            self.bn2 = nn.GroupNorm(32, int(out_planes / 2))
            self.bn3 = nn.GroupNorm(32, int(out_planes / 4))
            self.bn4 = nn.GroupNorm(32, in_planes)

        if in_planes != out_planes:
            self.downsample = nn.Sequential(
                self.bn4,
                nn.ReLU(True),
                nn.Conv2d(in_planes,
                          out_planes,
                          kernel_size=1,
                          stride=1,
                          bias=False),
            )
        else:
            self.downsample = None

    def forward(self, x):
        residual = x

        out1 = self.bn1(x)
        out1 = F.relu(out1, True)
        out1 = self.conv1(out1)

        out2 = self.bn2(out1)
        out2 = F.relu(out2, True)
        out2 = self.conv2(out2)

        out3 = self.bn3(out2)
        out3 = F.relu(out3, True)
        out3 = self.conv3(out3)

        out3 = torch.cat((out1, out2, out3), 1)

        if self.downsample is not None:
            residual = self.downsample(residual)

        out3 += residual

        return out3


class Vgg19(torch.nn.Module):

    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out


class VGGLoss(nn.Module):

    def __init__(self):
        super(VGGLoss, self).__init__()
        self.vgg = Vgg19().cuda()
        self.criterion = nn.L1Loss()
        self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]

    def forward(self, x, y):
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)
        loss = 0
        for i in range(len(x_vgg)):
            loss += self.weights[i] * self.criterion(x_vgg[i],
                                                     y_vgg[i].detach())
        return loss