Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 18,094 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import torch
import torch.nn.functional as F
import numpy as np
''' Rotation Converter
This function is borrowed from https://github.com/kornia/kornia
ref: https://kornia.readthedocs.io/en/v0.1.2/_modules/torchgeometry/core/conversions.html#
Repre: euler angle(3), axis angle(3), rotation matrix(3x3), quaternion(4), continuous rotation representation (6)
batch_rodrigues: axis angle -> matrix
'''
pi = torch.Tensor([3.14159265358979323846])
def rad2deg(tensor):
"""Function that converts angles from radians to degrees.
See :class:`~torchgeometry.RadToDeg` for details.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Example:
>>> input = tgm.pi * torch.rand(1, 3, 3)
>>> output = tgm.rad2deg(input)
"""
if not torch.is_tensor(tensor):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(tensor)))
return 180. * tensor / pi.to(tensor.device).type(tensor.dtype)
def deg2rad(tensor):
"""Function that converts angles from degrees to radians.
See :class:`~torchgeometry.DegToRad` for details.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Examples::
>>> input = 360. * torch.rand(1, 3, 3)
>>> output = tgm.deg2rad(input)
"""
if not torch.is_tensor(tensor):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(tensor)))
return tensor * pi.to(tensor.device).type(tensor.dtype) / 180.
# to quaternion
def euler_to_quaternion(r):
x = r[..., 0]
y = r[..., 1]
z = r[..., 2]
z = z / 2.0
y = y / 2.0
x = x / 2.0
cz = torch.cos(z)
sz = torch.sin(z)
cy = torch.cos(y)
sy = torch.sin(y)
cx = torch.cos(x)
sx = torch.sin(x)
quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device)
quaternion[..., 0] += cx * cy * cz - sx * sy * sz
quaternion[..., 1] += cx * sy * sz + cy * cz * sx
quaternion[..., 2] += cx * cz * sy - sx * cy * sz
quaternion[..., 3] += cx * cy * sz + sx * cz * sy
return quaternion
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError(
"Input size must be a three dimensional tensor. Got {}".format(
rotation_matrix.shape))
# if not rotation_matrix.shape[-2:] == (3, 4):
# raise ValueError(
# "Input size must be a N x 3 x 4 tensor. Got {}".format(
# rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0,
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1.float()
mask_c1 = mask_d2 * (1 - mask_d0_d1.float())
mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1
mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float())
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
q *= 0.5
return q
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor:
"""Convert an angle axis to a quaternion.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
angle_axis (torch.Tensor): tensor with angle axis.
Return:
torch.Tensor: tensor with quaternion.
Shape:
- Input: :math:`(*, 3)` where `*` means, any number of dimensions
- Output: :math:`(*, 4)`
Example:
>>> angle_axis = torch.rand(2, 4) # Nx4
>>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3
"""
if not torch.is_tensor(angle_axis):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(angle_axis)))
if not angle_axis.shape[-1] == 3:
raise ValueError(
"Input must be a tensor of shape Nx3 or 3. Got {}".format(
angle_axis.shape))
# unpack input and compute conversion
a0: torch.Tensor = angle_axis[..., 0:1]
a1: torch.Tensor = angle_axis[..., 1:2]
a2: torch.Tensor = angle_axis[..., 2:3]
theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2
theta: torch.Tensor = torch.sqrt(theta_squared)
half_theta: torch.Tensor = theta * 0.5
mask: torch.Tensor = theta_squared > 0.0
ones: torch.Tensor = torch.ones_like(half_theta)
k_neg: torch.Tensor = 0.5 * ones
k_pos: torch.Tensor = torch.sin(half_theta) / theta
k: torch.Tensor = torch.where(mask, k_pos, k_neg)
w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones)
quaternion: torch.Tensor = torch.zeros_like(angle_axis)
quaternion[..., 0:1] += a0 * k
quaternion[..., 1:2] += a1 * k
quaternion[..., 2:3] += a2 * k
return torch.cat([w, quaternion], dim=-1)
# quaternion to
def quaternion_to_rotation_matrix(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
2], norm_quat[:,
3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
w2 - x2 - y2 + z2
],
dim=1).view(B, 3, 3)
return rotMat
def quaternion_to_angle_axis(quaternion: torch.Tensor):
"""Convert quaternion vector to angle axis of rotation. TODO: CORRECT
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError(
"Input must be a tensor of shape Nx4 or 4. Got {}".format(
quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * \
torch.ones_like(sin_theta).to(quaternion.device)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion).to(
quaternion.device)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
# credit to Muhammed Kocabas
# matrix to euler angle
# Device = Union[str, torch.device]
_AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2}
def _elementary_basis_vector(axis):
b = torch.zeros(3)
b[_AXIS_TO_IND[axis]] = 1
return b
def _compute_euler_from_matrix(dcm, seq='xyz', extrinsic=False):
# The algorithm assumes intrinsic frame transformations. For representation
# the paper uses transformation matrices, which are transpose of the
# direction cosine matrices used by our Rotation class.
# Adapt the algorithm for our case by
# 1. Instead of transposing our representation, use the transpose of the
# O matrix as defined in the paper, and be careful to swap indices
# 2. Reversing both axis sequence and angles for extrinsic rotations
orig_device = dcm.device
dcm = dcm.to('cpu')
seq = seq.lower()
if extrinsic:
seq = seq[::-1]
if dcm.ndim == 2:
dcm = dcm[None, :, :]
num_rotations = dcm.shape[0]
device = dcm.device
# Step 0
# Algorithm assumes axes as column vectors, here we use 1D vectors
n1 = _elementary_basis_vector(seq[0])
n2 = _elementary_basis_vector(seq[1])
n3 = _elementary_basis_vector(seq[2])
# Step 2
sl = torch.dot(torch.cross(n1, n2), n3)
cl = torch.dot(n1, n3)
# angle offset is lambda from the paper referenced in [2] from docstring of
# `as_euler` function
offset = torch.atan2(sl, cl)
c = torch.stack((n2, torch.cross(n1, n2), n1)).type(dcm.dtype).to(device)
# Step 3
rot = torch.tensor([
[1, 0, 0],
[0, cl, sl],
[0, -sl, cl],
]).type(dcm.dtype)
# import IPython; IPython.embed(); exit
res = torch.einsum('ij,...jk->...ik', c, dcm)
dcm_transformed = torch.einsum('...ij,jk->...ik', res, c.T @ rot)
# Step 4
angles = torch.zeros((num_rotations, 3), dtype=dcm.dtype, device=device)
# Ensure less than unit norm
positive_unity = dcm_transformed[:, 2, 2] > 1
negative_unity = dcm_transformed[:, 2, 2] < -1
dcm_transformed[positive_unity, 2, 2] = 1
dcm_transformed[negative_unity, 2, 2] = -1
angles[:, 1] = torch.acos(dcm_transformed[:, 2, 2])
# Steps 5, 6
eps = 1e-7
safe1 = (torch.abs(angles[:, 1]) >= eps)
safe2 = (torch.abs(angles[:, 1] - np.pi) >= eps)
# Step 4 (Completion)
angles[:, 1] += offset
# 5b
safe_mask = torch.logical_and(safe1, safe2)
angles[safe_mask, 0] = torch.atan2(dcm_transformed[safe_mask, 0, 2],
-dcm_transformed[safe_mask, 1, 2])
angles[safe_mask, 2] = torch.atan2(dcm_transformed[safe_mask, 2, 0],
dcm_transformed[safe_mask, 2, 1])
if extrinsic:
# For extrinsic, set first angle to zero so that after reversal we
# ensure that third angle is zero
# 6a
angles[~safe_mask, 0] = 0
# 6b
angles[~safe1, 2] = torch.atan2(
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1])
# 6c
angles[~safe2, 2] = -torch.atan2(
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1])
else:
# For instrinsic, set third angle to zero
# 6a
angles[~safe_mask, 2] = 0
# 6b
angles[~safe1, 0] = torch.atan2(
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1])
# 6c
angles[~safe2, 0] = torch.atan2(
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1])
# Step 7
if seq[0] == seq[2]:
# lambda = 0, so we can only ensure angle2 -> [0, pi]
adjust_mask = torch.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi)
else:
# lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2]
adjust_mask = torch.logical_or(angles[:, 1] < -np.pi / 2,
angles[:, 1] > np.pi / 2)
# Dont adjust gimbal locked angle sequences
adjust_mask = torch.logical_and(adjust_mask, safe_mask)
angles[adjust_mask, 0] += np.pi
angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1]
angles[adjust_mask, 2] -= np.pi
angles[angles < -np.pi] += 2 * np.pi
angles[angles > np.pi] -= 2 * np.pi
# Step 8
if not torch.all(safe_mask):
print("Gimbal lock detected. Setting third angle to zero since"
"it is not possible to uniquely determine all angles.")
# Reverse role of extrinsic and intrinsic rotations, but let third angle be
# zero for gimbal locked cases
if extrinsic:
# angles = angles[:, ::-1]
angles = torch.flip(angles, dims=[
-1,
])
angles = angles.to(orig_device)
return angles
# batch converter
def batch_euler2axis(r):
return quaternion_to_angle_axis(euler_to_quaternion(r))
def batch_euler2matrix(r):
return quaternion_to_rotation_matrix(euler_to_quaternion(r))
def batch_matrix2euler(rot_mats):
# Calculates rotation matrix to euler angles
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
# only y biw
# TODO: add x, z
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
return torch.atan2(-rot_mats[:, 2, 0], sy)
def batch_matrix2axis(rot_mats):
return quaternion_to_angle_axis(rotation_matrix_to_quaternion(rot_mats))
def batch_axis2matrix(theta):
# angle axis to rotation matrix
# theta N x 3
# return quat2mat(quat)
# batch_rodrigues
return quaternion_to_rotation_matrix(angle_axis_to_quaternion(theta))
def batch_axis2euler(theta):
return batch_matrix2euler(batch_axis2matrix(theta))
def batch_axis2euler(r):
return rot_mat_to_euler(batch_rodrigues(r))
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
''' same as batch_matrix2axis
Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
Code from smplx/flame, what PS people often use
'''
batch_size = rot_vecs.shape[0]
device = rot_vecs.device
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
def batch_cont2matrix(module_input):
''' Decoder for transforming a latent representation to rotation matrices
Implements the decoding method described in:
"On the Continuity of Rotation Representations in Neural Networks"
Code from https://github.com/vchoutas/expose
'''
batch_size = module_input.shape[0]
reshaped_input = module_input.reshape(-1, 3, 2)
# Normalize the first vector
b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1)
dot_prod = torch.sum(b1 * reshaped_input[:, :, 1].clone(),
dim=1,
keepdim=True)
# Compute the second vector by finding the orthogonal complement to it
b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1)
# Finish building the basis by taking the cross product
b3 = torch.cross(b1, b2, dim=1)
rot_mats = torch.stack([b1, b2, b3], dim=-1)
return rot_mats.view(batch_size, -1, 3, 3)
|