File size: 10,415 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import numpy as np
import cv2
import torch.nn.functional as F
from PIL import Image



def project(xyz, K, RT):
    """
    xyz: [N, 3]
    K: [3, 3]
    RT: [3, 4]
    """
    xyz = np.dot(RT[:, :3],xyz.T).T + RT[:, 3:].T
    xyz = np.dot(K,xyz.T).T
    xy = xyz[:, :2] + 256
    return xy


def get_rays(H, W, K, R, T):
    # w2c=np.concatenate([R,T],axis=1)
    # w2c=np.concatenate([w2c,[[0,0,0,1]]],axis=0)
    # c2w=np.linalg.inv(w2c)
    # i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
    # dirs = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1)
    # # Rotate ray directions from camera frame to the world frame
    # rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1)  # dot product, equals to: [c2w.dot(dir) for dir in dirs]
    # # Translate camera frame's origin to the world frame. It is the origin of all rays.
    # rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
    # calculate the camera origin
    rays_o = -np.dot(np.linalg.inv(R), T).ravel()+np.array([0,0,500])
    # calculate the world coordinates of pixels
    i, j = np.meshgrid(np.arange(W, dtype=np.float32),
                       np.arange(H, dtype=np.float32),
                       indexing='xy')
    #xy1 = np.stack([i, j, np.ones_like(i)], axis=2)
    pixel_camera = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1)
    pixel_world = np.dot(R.T, (pixel_camera - T.ravel()).reshape(-1,3).T).T.reshape(H,W,3)
    # calculate the ray direction
    rays_d = pixel_world - rays_o[None, None]
    rays_d = rays_d / np.linalg.norm(rays_d, axis=2, keepdims=True)
    rays_o = np.broadcast_to(rays_o, rays_d.shape)
    return rays_o, rays_d


def get_bound_corners(bounds):
    min_x, min_y, min_z = bounds[0]
    max_x, max_y, max_z = bounds[1]
    corners_3d = np.array([
        [min_x, min_y, min_z],
        [min_x, min_y, max_z],
        [min_x, max_y, min_z],
        [min_x, max_y, max_z],
        [max_x, min_y, min_z],
        [max_x, min_y, max_z],
        [max_x, max_y, min_z],
        [max_x, max_y, max_z],
    ])
    return corners_3d


def get_bound_2d_mask(bounds, K, pose, H, W):
    corners_3d = get_bound_corners(bounds)
    corners_2d = project(corners_3d, K, pose)
    corners_2d = np.round(corners_2d).astype(int)
    mask = np.zeros((H, W), dtype=np.uint8)
    cv2.fillPoly(mask, [corners_2d[[0, 1, 3, 2, 0]]], 1)
    cv2.fillPoly(mask, [corners_2d[[4, 5, 7, 6, 4]]], 1)
    cv2.fillPoly(mask, [corners_2d[[0, 1, 5, 4, 0]]], 1)
    cv2.fillPoly(mask, [corners_2d[[2, 3, 7, 6, 2]]], 1)
    cv2.fillPoly(mask, [corners_2d[[0, 2, 6, 4, 0]]], 1)
    cv2.fillPoly(mask, [corners_2d[[1, 3, 7, 5, 1]]], 1)
    return mask


def get_near_far(bounds, ray_o, ray_d):
    """calculate intersections with 3d bounding box"""
    bounds = bounds + np.array([-0.01, 0.01])[:, None]
    nominator = bounds[None] - ray_o[:, None]
    # calculate the step of intersections at six planes of the 3d bounding box
    d_intersect = (nominator / (ray_d[:, None] + 1e-9)).reshape(-1, 6)
    # calculate the six interections
    p_intersect = d_intersect[..., None] * ray_d[:, None] + ray_o[:, None]
    # calculate the intersections located at the 3d bounding box
    min_x, min_y, min_z, max_x, max_y, max_z = bounds.ravel()
    eps = 1e-6
    p_mask_at_box = (p_intersect[..., 0] >= (min_x - eps)) * \
                    (p_intersect[..., 0] <= (max_x + eps)) * \
                    (p_intersect[..., 1] >= (min_y - eps)) * \
                    (p_intersect[..., 1] <= (max_y + eps)) * \
                    (p_intersect[..., 2] >= (min_z - eps)) * \
                    (p_intersect[..., 2] <= (max_z + eps))
    # obtain the intersections of rays which intersect exactly twice
    mask_at_box = p_mask_at_box.sum(-1) == 2
    p_intervals = p_intersect[mask_at_box][p_mask_at_box[mask_at_box]].reshape(
        -1, 2, 3)

    # calculate the step of intersections
    ray_o = ray_o[mask_at_box]
    ray_d = ray_d[mask_at_box]
    norm_ray = np.linalg.norm(ray_d, axis=1)
    d0 = np.linalg.norm(p_intervals[:, 0] - ray_o, axis=1) / norm_ray
    d1 = np.linalg.norm(p_intervals[:, 1] - ray_o, axis=1) / norm_ray
    near = np.minimum(d0, d1)
    far = np.maximum(d0, d1)

    return near, far, mask_at_box


def sample_ray_h36m(img, msk, K, R, T, bounds, nrays, training = True):
    H, W = img.shape[:2]
    K[2,2]=1
    ray_o, ray_d = get_rays(H, W, K, R, T)  # world coordinate

    pose = np.concatenate([R, T], axis=1)
    bound_mask = get_bound_2d_mask(bounds, K, pose, H, W)  # 可视化bound mask
    # # bound_mask [512,512]
    # # save bound mask as image
    # bound_mask = bound_mask.astype(np.uint8)
    # bound_mask = bound_mask * 255
    # bound_mask = Image.fromarray(bound_mask)
    # msk_image=Image.fromarray(msk)
    # bound_mask.save('bound_mask.png')
    # msk_image.save('msk.png')


    img[bound_mask != 1] = 0

    #msk = msk * bound_mask

    
    if training:
        nsampled_rays = 0
        # face_sample_ratio = cfg.face_sample_ratio
        # body_sample_ratio = cfg.body_sample_ratio
        body_sample_ratio = 0.8
        ray_o_list = []
        ray_d_list = []
        rgb_list = []
        body_mask_list = []
        near_list = []
        far_list = []
        coord_list = []
        mask_at_box_list = []

        while nsampled_rays < nrays:
            n_body = int((nrays - nsampled_rays) * body_sample_ratio)
            n_rand = (nrays - nsampled_rays) - n_body

            # sample rays on body
            coord_body = np.argwhere(msk > 0)
            
            coord_body = coord_body[np.random.randint(0, len(coord_body)-1, n_body)]

            # sample rays in the bound mask
            coord = np.argwhere(bound_mask > 0)
            coord = coord[np.random.randint(0, len(coord), n_rand)]

            coord = np.concatenate([coord_body, coord], axis=0)

            ray_o_ = ray_o[coord[:, 0], coord[:, 1]]
            ray_d_ = ray_d[coord[:, 0], coord[:, 1]]
            rgb_ = img[coord[:, 0], coord[:, 1]]
            body_mask_ = msk[coord[:, 0], coord[:, 1]]

            near_, far_, mask_at_box = get_near_far(bounds, ray_o_, ray_d_)

            ray_o_list.append(ray_o_[mask_at_box])
            ray_d_list.append(ray_d_[mask_at_box])
            rgb_list.append(rgb_[mask_at_box])
            body_mask_list.append(body_mask_[mask_at_box])
            near_list.append(near_)
            far_list.append(far_)
            coord_list.append(coord[mask_at_box])
            mask_at_box_list.append(mask_at_box[mask_at_box])
            nsampled_rays += len(near_)

        ray_o = np.concatenate(ray_o_list).astype(np.float32)
        ray_d = np.concatenate(ray_d_list).astype(np.float32)
        rgb = np.concatenate(rgb_list).astype(np.float32)
        body_mask = (np.concatenate(body_mask_list) > 0).astype(np.float32)
        near = np.concatenate(near_list).astype(np.float32)
        far = np.concatenate(far_list).astype(np.float32)
        coord = np.concatenate(coord_list)
        mask_at_box = np.concatenate(mask_at_box_list)
    else:
        rgb = img.reshape(-1, 3).astype(np.float32)
        body_mask = msk.reshape(-1).astype(np.float32)
        ray_o = ray_o.reshape(-1, 3).astype(np.float32)
        ray_d = ray_d.reshape(-1, 3).astype(np.float32)
        near, far, mask_at_box = get_near_far(bounds, ray_o, ray_d)
        mask_at_box = np.logical_and(mask_at_box > 0, body_mask > 0)
        near = near.astype(np.float32)
        far = far.astype(np.float32)
        rgb = rgb[mask_at_box]
        body_mask = body_mask[mask_at_box]
        ray_o = ray_o[mask_at_box]
        ray_d = ray_d[mask_at_box]
        coord = np.argwhere(mask_at_box.reshape(H, W) == 1)

    return rgb, body_mask, ray_o, ray_d, near, far, coord, mask_at_box


def raw2outputs(raw, z_vals, rays_d, white_bkgd=False):
    """Transforms model's predictions to semantically meaningful values.
    Args:
        raw: [num_rays, num_samples along ray, 4]. Prediction from model.
        z_vals: [num_rays, num_samples along ray]. Integration time.
        rays_d: [num_rays, 3]. Direction of each ray.
    Returns:
        rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
        disp_map: [num_rays]. Disparity map. Inverse of depth map.
        acc_map: [num_rays]. Sum of weights along each ray.
        weights: [num_rays, num_samples]. Weights assigned to each sampled color.
        depth_map: [num_rays]. Estimated distance to object.
    """
    raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists)

    dists = z_vals[...,1:] - z_vals[...,:-1]
    dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape).to(z_vals.device)], -1)  # [N_rays, N_samples]

    dists = dists * torch.norm(rays_d[...,None,:], dim=-1)

    rgb = raw[...,:3]  # [N_rays, N_samples, 3]A
    noise = 0.
    
    alpha = raw2alpha(raw[...,3] + noise, dists)  # [N_rays, N_samples]  
    # weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)
    weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)).to(z_vals.device), 1.-alpha + 1e-10], -1), -1)[:, :-1]  #后面的cumprod是累乘函数,是求Ti这个积分项
    rgb_map = torch.sum(weights[...,None] * rgb, -2)  # [N_rays, 3]  C and c

    depth_map = torch.sum(weights * z_vals, -1)
    disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map).to(z_vals.device), depth_map / torch.sum(weights, -1))
    acc_map = torch.sum(weights, -1)

    if white_bkgd:
        rgb_map = rgb_map + (1.-acc_map[...,None])
    return rgb_map, disp_map, acc_map, weights, depth_map


def get_wsampling_points(ray_o, ray_d, near, far):
        """
        sample pts on rays
        """
        N_samples=64
        # calculate the steps for each ray
        t_vals = torch.linspace(0., 1., steps=N_samples)
        z_vals = near[..., None] * (1. - t_vals) + far[..., None] * t_vals

        
        # get intervals between samples
        mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
        upper = torch.cat([mids, z_vals[..., -1:]], -1)
        lower = torch.cat([z_vals[..., :1], mids], -1)
        # stratified samples in those intervals
        t_rand = torch.rand(z_vals.shape)
        z_vals = lower + (upper - lower) * t_rand

        pts = ray_o[ :, None] + ray_d[ :, None] * z_vals[..., None]

        return pts, z_vals