File size: 10,402 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torch.nn as nn
import torch.nn.functional as F


def iuvmap_clean(U_uv, V_uv, Index_UV, AnnIndex=None):

    Index_UV_max = torch.argmax(Index_UV, dim=1).float()
    recon_Index_UV = []
    for i in range(Index_UV.size(1)):
        if i == 0:
            recon_Index_UV_i = torch.min(
                F.threshold(Index_UV_max + 1, 0.5, 0), -F.threshold(-Index_UV_max - 1, -1.5, 0)
            )
        else:
            recon_Index_UV_i = torch.min(
                F.threshold(Index_UV_max, i - 0.5, 0), -F.threshold(-Index_UV_max, -i - 0.5, 0)
            ) / float(i)
        recon_Index_UV.append(recon_Index_UV_i)
    recon_Index_UV = torch.stack(recon_Index_UV, dim=1)

    if AnnIndex is None:
        recon_Ann_Index = None
    else:
        AnnIndex_max = torch.argmax(AnnIndex, dim=1).float()
        recon_Ann_Index = []
        for i in range(AnnIndex.size(1)):
            if i == 0:
                recon_Ann_Index_i = torch.min(
                    F.threshold(AnnIndex_max + 1, 0.5, 0), -F.threshold(-AnnIndex_max - 1, -1.5, 0)
                )
            else:
                recon_Ann_Index_i = torch.min(
                    F.threshold(AnnIndex_max, i - 0.5, 0), -F.threshold(-AnnIndex_max, -i - 0.5, 0)
                ) / float(i)
            recon_Ann_Index.append(recon_Ann_Index_i)
        recon_Ann_Index = torch.stack(recon_Ann_Index, dim=1)

    recon_U = recon_Index_UV * U_uv
    recon_V = recon_Index_UV * V_uv

    return recon_U, recon_V, recon_Index_UV, recon_Ann_Index


def iuv_map2img(U_uv, V_uv, Index_UV, AnnIndex=None, uv_rois=None, ind_mapping=None, n_part=24):
    device_id = U_uv.get_device()
    batch_size = U_uv.size(0)
    K = U_uv.size(1)
    heatmap_size = U_uv.size(2)

    Index_UV_max = torch.argmax(Index_UV, dim=1)
    if AnnIndex is None:
        Index_UV_max = Index_UV_max.to(torch.int64)
    else:
        AnnIndex_max = torch.argmax(AnnIndex, dim=1)
        Index_UV_max = Index_UV_max * (AnnIndex_max > 0).to(torch.int64)

    outputs = []

    for batch_id in range(batch_size):

        output = torch.zeros([3, U_uv.size(2), U_uv.size(3)], dtype=torch.float32).cuda(device_id)
        output[0] = Index_UV_max[batch_id].to(torch.float32)
        if ind_mapping is None:
            output[0] /= float(K - 1)
        else:
            for ind in range(len(ind_mapping)):
                output[0][output[0] == ind] = ind_mapping[ind] * (1. / n_part)

        for part_id in range(0, K):
            CurrentU = U_uv[batch_id, part_id]
            CurrentV = V_uv[batch_id, part_id]
            output[1,
                   Index_UV_max[batch_id] == part_id] = CurrentU[Index_UV_max[batch_id] == part_id]
            output[2,
                   Index_UV_max[batch_id] == part_id] = CurrentV[Index_UV_max[batch_id] == part_id]

        if uv_rois is None:
            outputs.append(output.unsqueeze(0))
        else:
            roi_fg = uv_rois[batch_id][1:]

            # x1 = roi_fg[0]
            # x2 = roi_fg[2]
            # y1 = roi_fg[1]
            # y2 = roi_fg[3]

            w = roi_fg[2] - roi_fg[0]
            h = roi_fg[3] - roi_fg[1]

            aspect_ratio = float(w) / h

            if aspect_ratio < 1:
                new_size = [heatmap_size, max(int(heatmap_size * aspect_ratio), 1)]
                output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest')
                paddingleft = int(0.5 * (heatmap_size - new_size[1]))
                output = F.pad(
                    output, pad=(paddingleft, heatmap_size - new_size[1] - paddingleft, 0, 0)
                )
            else:
                new_size = [max(int(heatmap_size / aspect_ratio), 1), heatmap_size]
                output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest')
                paddingtop = int(0.5 * (heatmap_size - new_size[0]))
                output = F.pad(
                    output, pad=(0, 0, paddingtop, heatmap_size - new_size[0] - paddingtop)
                )

            outputs.append(output)

    return torch.cat(outputs, dim=0)


def iuv_img2map(uvimages, uv_rois=None, new_size=None, n_part=24):
    device_id = uvimages.get_device()
    batch_size = uvimages.size(0)
    uvimg_size = uvimages.size(-1)

    Index2mask = [
        [0], [1, 2], [3], [4], [5], [6], [7, 9], [8, 10], [11, 13], [12, 14], [15, 17], [16, 18],
        [19, 21], [20, 22], [23, 24]
    ]

    part_ind = torch.round(uvimages[:, 0, :, :] * n_part)
    part_u = uvimages[:, 1, :, :]
    part_v = uvimages[:, 2, :, :]

    recon_U = []
    recon_V = []
    recon_Index_UV = []
    recon_Ann_Index = []

    for i in range(n_part + 1):
        if i == 0:
            recon_Index_UV_i = torch.min(
                F.threshold(part_ind + 1, 0.5, 0), -F.threshold(-part_ind - 1, -1.5, 0)
            )
        else:
            recon_Index_UV_i = torch.min(
                F.threshold(part_ind, i - 0.5, 0), -F.threshold(-part_ind, -i - 0.5, 0)
            ) / float(i)
        recon_U_i = recon_Index_UV_i * part_u
        recon_V_i = recon_Index_UV_i * part_v

        recon_Index_UV.append(recon_Index_UV_i)
        recon_U.append(recon_U_i)
        recon_V.append(recon_V_i)

    for i in range(len(Index2mask)):
        if len(Index2mask[i]) == 1:
            recon_Ann_Index_i = recon_Index_UV[Index2mask[i][0]]
        elif len(Index2mask[i]) == 2:
            p_ind0 = Index2mask[i][0]
            p_ind1 = Index2mask[i][1]
            # recon_Ann_Index[:, i, :, :] = torch.where(recon_Index_UV[:, p_ind0, :, :] > 0.5, recon_Index_UV[:, p_ind0, :, :], recon_Index_UV[:, p_ind1, :, :])
            # recon_Ann_Index[:, i, :, :] = torch.eq(part_ind, p_ind0) | torch.eq(part_ind, p_ind1)
            recon_Ann_Index_i = recon_Index_UV[p_ind0] + recon_Index_UV[p_ind1]

        recon_Ann_Index.append(recon_Ann_Index_i)

    recon_U = torch.stack(recon_U, dim=1)
    recon_V = torch.stack(recon_V, dim=1)
    recon_Index_UV = torch.stack(recon_Index_UV, dim=1)
    recon_Ann_Index = torch.stack(recon_Ann_Index, dim=1)

    if uv_rois is None:
        return recon_U, recon_V, recon_Index_UV, recon_Ann_Index

    recon_U_roi = []
    recon_V_roi = []
    recon_Index_UV_roi = []
    recon_Ann_Index_roi = []

    if new_size is None:
        M = uvimg_size
    else:
        M = new_size

    for i in range(batch_size):
        roi_fg = uv_rois[i][1:]

        # x1 = roi_fg[0]
        # x2 = roi_fg[2]
        # y1 = roi_fg[1]
        # y2 = roi_fg[3]

        w = roi_fg[2] - roi_fg[0]
        h = roi_fg[3] - roi_fg[1]

        aspect_ratio = float(w) / h

        if aspect_ratio < 1:
            w_size = max(int(uvimg_size * aspect_ratio), 1)
            w_margin = int((uvimg_size - w_size) / 2)

            recon_U_roi_i = recon_U[i, :, :, w_margin:w_margin + w_size]
            recon_V_roi_i = recon_V[i, :, :, w_margin:w_margin + w_size]
            recon_Index_UV_roi_i = recon_Index_UV[i, :, :, w_margin:w_margin + w_size]
            recon_Ann_Index_roi_i = recon_Ann_Index[i, :, :, w_margin:w_margin + w_size]
        else:
            h_size = max(int(uvimg_size / aspect_ratio), 1)
            h_margin = int((uvimg_size - h_size) / 2)

            recon_U_roi_i = recon_U[i, :, h_margin:h_margin + h_size, :]
            recon_V_roi_i = recon_V[i, :, h_margin:h_margin + h_size, :]
            recon_Index_UV_roi_i = recon_Index_UV[i, :, h_margin:h_margin + h_size, :]
            recon_Ann_Index_roi_i = recon_Ann_Index[i, :, h_margin:h_margin + h_size, :]

        recon_U_roi_i = F.interpolate(recon_U_roi_i.unsqueeze(0), size=(M, M), mode='nearest')
        recon_V_roi_i = F.interpolate(recon_V_roi_i.unsqueeze(0), size=(M, M), mode='nearest')
        recon_Index_UV_roi_i = F.interpolate(
            recon_Index_UV_roi_i.unsqueeze(0), size=(M, M), mode='nearest'
        )
        recon_Ann_Index_roi_i = F.interpolate(
            recon_Ann_Index_roi_i.unsqueeze(0), size=(M, M), mode='nearest'
        )

        recon_U_roi.append(recon_U_roi_i)
        recon_V_roi.append(recon_V_roi_i)
        recon_Index_UV_roi.append(recon_Index_UV_roi_i)
        recon_Ann_Index_roi.append(recon_Ann_Index_roi_i)

    recon_U_roi = torch.cat(recon_U_roi, dim=0)
    recon_V_roi = torch.cat(recon_V_roi, dim=0)
    recon_Index_UV_roi = torch.cat(recon_Index_UV_roi, dim=0)
    recon_Ann_Index_roi = torch.cat(recon_Ann_Index_roi, dim=0)

    return recon_U_roi, recon_V_roi, recon_Index_UV_roi, recon_Ann_Index_roi


def seg_img2map(segimages, uv_rois=None, new_size=None, n_part=24):
    device_id = segimages.get_device()
    batch_size = segimages.size(0)
    uvimg_size = segimages.size(-1)

    part_ind = torch.round(segimages[:, 0, :, :] * n_part)

    recon_Index_UV = []

    for i in range(n_part + 1):
        if i == 0:
            recon_Index_UV_i = torch.min(
                F.threshold(part_ind + 1, 0.5, 0), -F.threshold(-part_ind - 1, -1.5, 0)
            )
        else:
            recon_Index_UV_i = torch.min(
                F.threshold(part_ind, i - 0.5, 0), -F.threshold(-part_ind, -i - 0.5, 0)
            ) / float(i)

        recon_Index_UV.append(recon_Index_UV_i)

    recon_Index_UV = torch.stack(recon_Index_UV, dim=1)

    if uv_rois is None:
        return None, None, recon_Index_UV, None

    recon_Index_UV_roi = []

    if new_size is None:
        M = uvimg_size
    else:
        M = new_size

    for i in range(batch_size):
        roi_fg = uv_rois[i][1:]

        # x1 = roi_fg[0]
        # x2 = roi_fg[2]
        # y1 = roi_fg[1]
        # y2 = roi_fg[3]

        w = roi_fg[2] - roi_fg[0]
        h = roi_fg[3] - roi_fg[1]

        aspect_ratio = float(w) / h

        if aspect_ratio < 1:
            w_size = max(int(uvimg_size * aspect_ratio), 1)
            w_margin = int((uvimg_size - w_size) / 2)

            recon_Index_UV_roi_i = recon_Index_UV[i, :, :, w_margin:w_margin + w_size]
        else:
            h_size = max(int(uvimg_size / aspect_ratio), 1)
            h_margin = int((uvimg_size - h_size) / 2)

            recon_Index_UV_roi_i = recon_Index_UV[i, :, h_margin:h_margin + h_size, :]

        recon_Index_UV_roi_i = F.interpolate(
            recon_Index_UV_roi_i.unsqueeze(0), size=(M, M), mode='nearest'
        )

        recon_Index_UV_roi.append(recon_Index_UV_roi_i)

    recon_Index_UV_roi = torch.cat(recon_Index_UV_roi, dim=0)

    return None, None, recon_Index_UV_roi, None