Spaces:
Starting
on
L40S
Starting
on
L40S
File size: 15,820 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import os
import code
import torch
from torch import nn
from .transformers.bert.modeling_bert import BertPreTrainedModel, BertEmbeddings, BertPooler, BertIntermediate, BertOutput, BertSelfOutput
# import src.modeling.data.config as cfg
# from src.modeling._gcnn import GraphConvolution, GraphResBlock
from .transformers.bert.modeling_utils import prune_linear_layer
LayerNormClass = torch.nn.LayerNorm
BertLayerNorm = torch.nn.LayerNorm
from .transformers.bert import BertConfig
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None):
if history_state is not None:
raise
x_states = torch.cat([history_state, hidden_states], dim=1)
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(x_states)
mixed_value_layer = self.value(x_states)
else:
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
# print('mixed_query_layer', mixed_query_layer.shape, mixed_key_layer.shape, mixed_value_layer.shape)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# print('query_layer', query_layer.shape, key_layer.shape, value_layer.shape)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
raise
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer, )
return outputs
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
for head in heads:
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
def forward(self, input_tensor, attention_mask, head_mask=None, history_state=None):
self_outputs = self.self(input_tensor, attention_mask, head_mask, history_state)
attention_output = self.output(self_outputs[0], input_tensor)
outputs = (attention_output, ) + self_outputs[1:] # add attentions if we output them
return outputs
class AttLayer(nn.Module):
def __init__(self, config):
super(AttLayer, self).__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def MHA(self, hidden_states, attention_mask, head_mask=None, history_state=None):
attention_outputs = self.attention(hidden_states, attention_mask, head_mask, history_state)
attention_output = attention_outputs[0]
# print('attention_output', hidden_states.shape, attention_output.shape)
intermediate_output = self.intermediate(attention_output)
# print('intermediate_output', intermediate_output.shape)
layer_output = self.output(intermediate_output, attention_output)
# print('layer_output', layer_output.shape)
outputs = (layer_output, ) + attention_outputs[1:] # add attentions if we output them
return outputs
def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None):
return self.MHA(hidden_states, attention_mask, head_mask, history_state)
class AttEncoder(nn.Module):
def __init__(self, config):
super(AttEncoder, self).__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([AttLayer(config) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, head_mask=None, encoder_history_states=None):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
history_state = None if encoder_history_states is None else encoder_history_states[i]
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], history_state)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1], )
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states, )
outputs = (hidden_states, )
if self.output_hidden_states:
outputs = outputs + (all_hidden_states, )
if self.output_attentions:
outputs = outputs + (all_attentions, )
return outputs # outputs, (hidden states), (attentions)
class EncoderBlock(BertPreTrainedModel):
def __init__(self, config):
super(EncoderBlock, self).__init__(config)
self.config = config
# self.embeddings = BertEmbeddings(config)
self.encoder = AttEncoder(config)
# self.pooler = BertPooler(config)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.img_dim = config.img_feature_dim
try:
self.use_img_layernorm = config.use_img_layernorm
except:
self.use_img_layernorm = None
self.img_embedding = nn.Linear(self.img_dim, self.config.hidden_size, bias=True)
# self.dropout = nn.Dropout(config.hidden_dropout_prob)
if self.use_img_layernorm:
self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.img_layer_norm_eps)
self.apply(self.init_weights)
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
img_feats,
input_ids=None,
token_type_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None
):
batch_size = len(img_feats)
seq_length = len(img_feats[0])
input_ids = torch.zeros([batch_size, seq_length], dtype=torch.long).to(img_feats.device)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
# print('-------------------')
# print('position_ids', seq_length, position_ids.shape)
# 494 torch.Size([2, 494])
position_embeddings = self.position_embeddings(position_ids)
# print('position_embeddings', position_embeddings.shape, self.config.max_position_embeddings, self.config.hidden_size)
# torch.Size([2, 494, 1024]) 512 1024
# torch.Size([2, 494, 256]) 512 256
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
else:
raise
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
else:
raise
if attention_mask.dim() == 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
elif attention_mask.dim() == 3:
extended_attention_mask = attention_mask.unsqueeze(1)
else:
raise NotImplementedError
# extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = extended_attention_mask.to(
dtype=img_feats.dtype
) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
if head_mask is not None:
raise
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
-1
) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
# Project input token features to have spcified hidden size
# print('img_feats', img_feats.shape) # torch.Size([2, 494, 2051])
img_embedding_output = self.img_embedding(img_feats)
# print('img_embedding_output', img_embedding_output.shape) # torch.Size([2, 494, 1024])
# We empirically observe that adding an additional learnable position embedding leads to more stable training
embeddings = position_embeddings + img_embedding_output
if self.use_img_layernorm:
embeddings = self.LayerNorm(embeddings)
# embeddings = self.dropout(embeddings)
# print('extended_attention_mask', extended_attention_mask.shape) # torch.Size([2, 1, 1, 494])
encoder_outputs = self.encoder(embeddings, extended_attention_mask, head_mask=head_mask)
sequence_output = encoder_outputs[0]
outputs = (sequence_output, )
if self.config.output_hidden_states:
all_hidden_states = encoder_outputs[1]
outputs = outputs + (all_hidden_states, )
if self.config.output_attentions:
all_attentions = encoder_outputs[-1]
outputs = outputs + (all_attentions, )
return outputs
def get_att_block(
img_feature_dim=2048,
output_feat_dim=512,
hidden_feat_dim=1024,
num_attention_heads=4,
num_hidden_layers=1
):
config_class = BertConfig
config = config_class.from_pretrained('lib/pymafx/models/transformers/bert/bert-base-uncased/')
interm_size_scale = 2
config.output_attentions = False
# config.hidden_dropout_prob = args.drop_out
config.img_feature_dim = img_feature_dim
# config.output_feature_dim = output_feat_dim
config.hidden_size = hidden_feat_dim
config.intermediate_size = int(config.hidden_size * interm_size_scale)
config.num_hidden_layers = num_hidden_layers
config.num_attention_heads = num_attention_heads
config.max_position_embeddings = 900
# init a transformer encoder and append it to a list
assert config.hidden_size % config.num_attention_heads == 0
att_model = EncoderBlock(config=config)
return att_model
class Graphormer(BertPreTrainedModel):
'''
The archtecture of a transformer encoder block we used in Graphormer
'''
def __init__(self, config):
super(Graphormer, self).__init__(config)
self.config = config
self.bert = EncoderBlock(config)
self.cls_head = nn.Linear(config.hidden_size, self.config.output_feature_dim)
self.residual = nn.Linear(config.img_feature_dim, self.config.output_feature_dim)
self.apply(self.init_weights)
def forward(
self,
img_feats,
input_ids=None,
token_type_ids=None,
attention_mask=None,
masked_lm_labels=None,
next_sentence_label=None,
position_ids=None,
head_mask=None
):
'''
# self.bert has three outputs
# predictions[0]: output tokens
# predictions[1]: all_hidden_states, if enable "self.config.output_hidden_states"
# predictions[2]: attentions, if enable "self.config.output_attentions"
'''
predictions = self.bert(
img_feats=img_feats,
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=head_mask
)
# We use "self.cls_head" to perform dimensionality reduction. We don't use it for classification.
pred_score = self.cls_head(predictions[0])
res_img_feats = self.residual(img_feats)
pred_score = pred_score + res_img_feats
# print('pred_score', pred_score.shape)
if self.config.output_attentions and self.config.output_hidden_states:
return pred_score, predictions[1], predictions[-1]
else:
return pred_score
|