Spaces:
Running
on
L40S
Running
on
L40S
File size: 18,227 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
# ------------------------------------------------------------------------------------
# Enhancing Transformers
# Copyright (c) 2022 Thuan H. Nguyen. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------------
# Modified from ViT-Pytorch (https://github.com/lucidrains/vit-pytorch)
# Copyright (c) 2020 Phil Wang. All Rights Reserved.
# ------------------------------------------------------------------------------------
import math
import numpy as np
from typing import Union, Tuple, List, Optional
from functools import partial
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
def get_2d_sincos_pos_embed(embed_dim, grid_size):
"""
grid_size: int or (int, int) of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_size = (grid_size, grid_size) if type(grid_size) != tuple else grid_size
grid_h = np.arange(grid_size[0], dtype=np.float32)
grid_w = np.arange(grid_size[1], dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def init_weights(m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
w = m.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
class PreNorm(nn.Module):
def __init__(self, dim: int, fn: nn.Module) -> None:
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.Tanh(),
nn.Linear(hidden_dim, dim)
)
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim: int, heads: int = 8, dim_head: int = 64) -> None:
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim) if project_out else nn.Identity()
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
attn = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class CrossAttention(nn.Module):
def __init__(self, dim: int, heads: int = 8, dim_head: int = 64) -> None:
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.norm = nn.LayerNorm(dim)
self.to_out = nn.Linear(inner_dim, dim) if project_out else nn.Identity()
self.multi_head_attention=PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head))
def forward(self, x: torch.FloatTensor, q_x:torch.FloatTensor) -> torch.FloatTensor:
q_in = self.multi_head_attention(q_x)+q_x
q_in = self.norm(q_in)
q = rearrange(self.to_q(q_in),'b n (h d) -> b h n d', h = self.heads)
kv = self.to_kv(x).chunk(2, dim = -1)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), kv)
attn = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out),q_in
class Transformer(nn.Module):
def __init__(self, dim: int, depth: int, heads: int, dim_head: int, mlp_dim: int) -> None:
super().__init__()
self.layers = nn.ModuleList([])
for idx in range(depth):
layer = nn.ModuleList([PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head)),
PreNorm(dim, FeedForward(dim, mlp_dim))])
self.layers.append(layer)
self.norm = nn.LayerNorm(dim)
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class CrossTransformer(nn.Module):
def __init__(self, dim: int, depth: int, heads: int, dim_head: int, mlp_dim: int) -> None:
super().__init__()
self.layers = nn.ModuleList([])
for idx in range(depth):
layer = nn.ModuleList([CrossAttention(dim, heads=heads, dim_head=dim_head),
PreNorm(dim, FeedForward(dim, mlp_dim))])
self.layers.append(layer)
self.norm = nn.LayerNorm(dim)
def forward(self, x: torch.FloatTensor, q_x:torch.FloatTensor) -> torch.FloatTensor:
encoder_output=x
for attn, ff in self.layers:
x,q_in = attn(encoder_output, q_x)
x = x + q_in
x = ff(x) + x
q_x=x
return self.norm(q_x)
class ViTEncoder(nn.Module):
def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int],
dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 3, dim_head: int = 64) -> None:
super().__init__()
image_height, image_width = image_size if isinstance(image_size, tuple) \
else (image_size, image_size)
patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \
else (patch_size, patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
en_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width))
self.num_patches = (image_height // patch_height) * (image_width // patch_width)
self.patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
nn.Conv2d(channels, dim, kernel_size=patch_size, stride=patch_size),
Rearrange('b c h w -> b (h w) c'),
)
self.en_pos_embedding = nn.Parameter(torch.from_numpy(en_pos_embedding).float().unsqueeze(0), requires_grad=False)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.apply(init_weights)
def forward(self, img: torch.FloatTensor) -> torch.FloatTensor:
x = self.to_patch_embedding(img)
x = x + self.en_pos_embedding
x = self.transformer(x)
return x
class ViTDecoder(nn.Module):
def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int],
dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 32, dim_head: int = 64) -> None:
super().__init__()
image_height, image_width = image_size if isinstance(image_size, tuple) \
else (image_size, image_size)
patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \
else (patch_size, patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
de_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width))
self.num_patches = (image_height // patch_height) * (image_width // patch_width)
self.patch_dim = channels * patch_height * patch_width
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.de_pos_embedding = nn.Parameter(torch.from_numpy(de_pos_embedding).float().unsqueeze(0), requires_grad=False)
self.to_pixel = nn.Sequential(
Rearrange('b (h w) c -> b c h w', h=image_height // patch_height),
nn.ConvTranspose2d(dim, channels, kernel_size=4, stride=4)
)
self.apply(init_weights)
def forward(self, token: torch.FloatTensor) -> torch.FloatTensor:
x = token + self.de_pos_embedding
x = self.transformer(x)
x = self.to_pixel(x)
return x
def get_last_layer(self) -> nn.Parameter:
return self.to_pixel[-1].weight
class CrossAttDecoder(nn.Module):
def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int],
dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 32, dim_head: int = 64) -> None:
super().__init__()
image_height, image_width = image_size if isinstance(image_size, tuple) \
else (image_size, image_size)
patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \
else (patch_size, patch_size)
self.to_patch_embedding = nn.Sequential(
nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size),
Rearrange('b c h w -> b (h w) c'),
)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
de_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width))
self.num_patches = (image_height // patch_height) * (image_width // patch_width)
self.patch_dim = channels * patch_height * patch_width
self.transformer = CrossTransformer(dim, depth, heads, dim_head, mlp_dim)
self.de_pos_embedding = nn.Parameter(torch.from_numpy(de_pos_embedding).float().unsqueeze(0), requires_grad=False)
self.to_pixel = nn.Sequential(
Rearrange('b (h w) c -> b c h w', h=image_height // patch_height),
nn.ConvTranspose2d(dim, channels, kernel_size=4, stride=4)
)
self.apply(init_weights)
def forward(self, token: torch.FloatTensor, query_img:torch.FloatTensor) -> torch.FloatTensor:
# batch_size=token.shape[0]
# query=self.query.repeat(batch_size,1,1)+self.de_pos_embedding
query=self.to_patch_embedding(query_img)+self.de_pos_embedding
x = token + self.de_pos_embedding
x = self.transformer(x,query)
x = self.to_pixel(x)
return x
def get_last_layer(self) -> nn.Parameter:
return self.to_pixel[-1].weight
class BaseQuantizer(nn.Module):
def __init__(self, embed_dim: int, n_embed: int, straight_through: bool = True, use_norm: bool = True,
use_residual: bool = False, num_quantizers: Optional[int] = None) -> None:
super().__init__()
self.straight_through = straight_through
self.norm = lambda x: F.normalize(x, dim=-1) if use_norm else x
self.use_residual = use_residual
self.num_quantizers = num_quantizers
self.embed_dim = embed_dim
self.n_embed = n_embed
self.embedding = nn.Embedding(self.n_embed, self.embed_dim)
self.embedding.weight.data.normal_()
def quantize(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor]:
pass
def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor]:
if not self.use_residual:
z_q, loss, encoding_indices = self.quantize(z)
else:
z_q = torch.zeros_like(z)
residual = z.detach().clone()
losses = []
encoding_indices = []
for _ in range(self.num_quantizers):
z_qi, loss, indices = self.quantize(residual.clone())
residual.sub_(z_qi)
z_q.add_(z_qi)
encoding_indices.append(indices)
losses.append(loss)
losses, encoding_indices = map(partial(torch.stack, dim = -1), (losses, encoding_indices))
loss = losses.mean()
# preserve gradients with straight-through estimator
if self.straight_through:
z_q = z + (z_q - z).detach()
return z_q, loss, encoding_indices
class VectorQuantizer(BaseQuantizer):
def __init__(self, embed_dim: int, n_embed: int, beta: float = 0.25, use_norm: bool = True,
use_residual: bool = False, num_quantizers: Optional[int] = None, **kwargs) -> None:
super().__init__(embed_dim, n_embed, True,
use_norm, use_residual, num_quantizers)
self.beta = beta
def quantize(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.LongTensor]:
z_reshaped_norm = self.norm(z.view(-1, self.embed_dim))
embedding_norm = self.norm(self.embedding.weight)
d = torch.sum(z_reshaped_norm ** 2, dim=1, keepdim=True) + \
torch.sum(embedding_norm ** 2, dim=1) - 2 * \
torch.einsum('b d, n d -> b n', z_reshaped_norm, embedding_norm)
encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
encoding_indices = encoding_indices.view(*z.shape[:-1])
z_q = self.embedding(encoding_indices).view(z.shape)
z_qnorm, z_norm = self.norm(z_q), self.norm(z)
# compute loss for embedding
loss = self.beta * torch.mean((z_qnorm.detach() - z_norm)**2) + \
torch.mean((z_qnorm - z_norm.detach())**2)
return z_qnorm, loss, encoding_indices
class ViTVQ(pl.LightningModule):
def __init__(self,image_size=512, patch_size=16,channels=3) -> None:
super().__init__()
self.encoder = ViTEncoder(image_size=image_size, patch_size=patch_size, dim=256,depth=8,heads=8,mlp_dim=2048,channels=channels)
self.F_decoder = ViTDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048)
self.B_decoder= CrossAttDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048)
self.R_decoder= CrossAttDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048)
self.L_decoder= CrossAttDecoder(image_size=image_size, patch_size=patch_size, dim=256,depth=3,heads=8,mlp_dim=2048)
# self.quantizer = VectorQuantizer(embed_dim=32,n_embed=8192)
# self.pre_quant = nn.Linear(512, 32)
# self.post_quant = nn.Linear(32, 512)
def forward(self, x: torch.FloatTensor,smpl_normal) -> torch.FloatTensor:
enc_out = self.encode(x)
dec = self.decode(enc_out,smpl_normal)
return dec
def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
h = self.encoder(x)
# h = self.pre_quant(h)
# quant, emb_loss, _ = self.quantizer(h)
return h #, emb_loss
def decode(self, enc_out: torch.FloatTensor,smpl_normal) -> torch.FloatTensor:
back_query=smpl_normal['T_normal_B']
right_query=smpl_normal['T_normal_R']
left_query=smpl_normal['T_normal_L']
# quant = self.post_quant(quant)
dec_F = self.F_decoder(enc_out)
dec_B = self.B_decoder(enc_out,back_query)
dec_R = self.R_decoder(enc_out,right_query)
dec_L = self.L_decoder(enc_out,left_query)
return (dec_F,dec_B,dec_R,dec_L)
# def encode_codes(self, x: torch.FloatTensor) -> torch.LongTensor:
# h = self.encoder(x)
# h = self.pre_quant(h)
# _, _, codes = self.quantizer(h)
# return codes
# def decode_codes(self, code: torch.LongTensor) -> torch.FloatTensor:
# quant = self.quantizer.embedding(code)
# quant = self.quantizer.norm(quant)
# if self.quantizer.use_residual:
# quant = quant.sum(-2)
# dec = self.decode(quant)
# return dec |