Spaces:
Running
on
L40S
Running
on
L40S
File size: 28,710 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
import torch
import numpy as np
import logging
from copy import deepcopy
from .utils.libkdtree import KDTree
logger_py = logging.getLogger(__name__)
def compute_iou(occ1, occ2):
''' Computes the Intersection over Union (IoU) value for two sets of
occupancy values.
Args:
occ1 (tensor): first set of occupancy values
occ2 (tensor): second set of occupancy values
'''
occ1 = np.asarray(occ1)
occ2 = np.asarray(occ2)
# Put all data in second dimension
# Also works for 1-dimensional data
if occ1.ndim >= 2:
occ1 = occ1.reshape(occ1.shape[0], -1)
if occ2.ndim >= 2:
occ2 = occ2.reshape(occ2.shape[0], -1)
# Convert to boolean values
occ1 = (occ1 >= 0.5)
occ2 = (occ2 >= 0.5)
# Compute IOU
area_union = (occ1 | occ2).astype(np.float32).sum(axis=-1)
area_intersect = (occ1 & occ2).astype(np.float32).sum(axis=-1)
iou = (area_intersect / area_union)
return iou
def rgb2gray(rgb):
''' rgb of size B x h x w x 3
'''
r, g, b = rgb[:, :, :, 0], rgb[:, :, :, 1], rgb[:, :, :, 2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def sample_patch_points(
batch_size, n_points, patch_size=1, image_resolution=(128, 128), continuous=True
):
''' Returns sampled points in the range [-1, 1].
Args:
batch_size (int): required batch size
n_points (int): number of points to sample
patch_size (int): size of patch; if > 1, patches of size patch_size
are sampled instead of individual points
image_resolution (tuple): image resolution (required for calculating
the pixel distances)
continuous (bool): whether to sample continuously or only on pixel
locations
'''
assert (patch_size > 0)
# Calculate step size for [-1, 1] that is equivalent to a pixel in
# original resolution
h_step = 1. / image_resolution[0]
w_step = 1. / image_resolution[1]
# Get number of patches
patch_size_squared = patch_size**2
n_patches = int(n_points / patch_size_squared)
if continuous:
p = torch.rand(batch_size, n_patches, 2) # [0, 1]
else:
px = torch.randint(0, image_resolution[1],
size=(batch_size, n_patches, 1)).float() / (image_resolution[1] - 1)
py = torch.randint(0, image_resolution[0],
size=(batch_size, n_patches, 1)).float() / (image_resolution[0] - 1)
p = torch.cat([px, py], dim=-1)
# Scale p to [0, (1 - (patch_size - 1) * step) ]
p[:, :, 0] *= 1 - (patch_size - 1) * w_step
p[:, :, 1] *= 1 - (patch_size - 1) * h_step
# Add points
patch_arange = torch.arange(patch_size)
x_offset, y_offset = torch.meshgrid(patch_arange, patch_arange)
patch_offsets = torch.stack([x_offset.reshape(-1), y_offset.reshape(-1)],
dim=1).view(1, 1, -1, 2).repeat(batch_size, n_patches, 1, 1).float()
patch_offsets[:, :, :, 0] *= w_step
patch_offsets[:, :, :, 1] *= h_step
# Add patch_offsets to points
p = p.view(batch_size, n_patches, 1, 2) + patch_offsets
# Scale to [-1, x]
p = p * 2 - 1
p = p.view(batch_size, -1, 2)
amax, amin = p.max(), p.min()
assert (amax <= 1. and amin >= -1.)
return p
def get_proposal_points_in_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, n_steps=40):
''' Returns n_steps equally spaced points inside the unit cube on the rays
cast from ray0 with direction ray_direction.
This function is used to get the ray marching points {p^ray_j} for a given
camera position ray0 and
a given ray direction ray_direction which goes from the camera_position to
the pixel location.
NOTE: The returned values d_proposal are the lengths of the ray:
p^ray_j = ray0 + d_proposal_j * ray_direction
Args:
ray0 (tensor): Start positions of the rays
ray_direction (tensor): Directions of rays
padding (float): Padding which is applied to the unit cube
eps (float): The epsilon value for numerical stability
n_steps (int): number of steps
'''
batch_size, n_pts, _ = ray0.shape
device = ray0.device
p_intervals, d_intervals, mask_inside_cube = \
check_ray_intersection_with_unit_cube(ray0, ray_direction, padding,
eps)
d_proposal = d_intervals[:, :, 0].unsqueeze(-1) + \
torch.linspace(0, 1, steps=n_steps).to(device).view(1, 1, -1) * \
(d_intervals[:, :, 1] - d_intervals[:, :, 0]).unsqueeze(-1)
d_proposal = d_proposal.unsqueeze(-1)
return d_proposal, mask_inside_cube
def check_ray_intersection_with_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, scale=2.0):
''' Checks if rays ray0 + d * ray_direction intersect with unit cube with
padding padding.
It returns the two intersection points as well as the sorted ray lengths d.
Args:
ray0 (tensor): Start positions of the rays
ray_direction (tensor): Directions of rays
padding (float): Padding which is applied to the unit cube
eps (float): The epsilon value for numerical stability
scale (float): cube size
'''
batch_size, n_pts, _ = ray0.shape
device = ray0.device
# calculate intersections with unit cube (< . , . > is the dot product)
# <n, x - p> = <n, ray0 + d * ray_direction - p_e> = 0
# d = - <n, ray0 - p_e> / <n, ray_direction>
# Get points on plane p_e
p_distance = (scale * 0.5) + padding / 2
p_e = torch.ones(batch_size, n_pts, 6).to(device) * p_distance
p_e[:, :, 3:] *= -1.
# Calculate the intersection points with given formula
nominator = p_e - ray0.repeat(1, 1, 2)
denominator = ray_direction.repeat(1, 1, 2)
d_intersect = nominator / denominator
p_intersect = ray0.unsqueeze(-2) + d_intersect.unsqueeze(-1) * \
ray_direction.unsqueeze(-2)
# Calculate mask where points intersect unit cube
p_mask_inside_cube = (
(p_intersect[:, :, :, 0] <= p_distance + eps) &
(p_intersect[:, :, :, 1] <= p_distance + eps) &
(p_intersect[:, :, :, 2] <= p_distance + eps) &
(p_intersect[:, :, :, 0] >= -(p_distance + eps)) &
(p_intersect[:, :, :, 1] >= -(p_distance + eps)) &
(p_intersect[:, :, :, 2] >= -(p_distance + eps))
).cpu()
# Correct rays are these which intersect exactly 2 times
mask_inside_cube = p_mask_inside_cube.sum(-1) == 2
# Get interval values for p's which are valid
p_intervals = p_intersect[mask_inside_cube][p_mask_inside_cube[mask_inside_cube]].view(-1, 2, 3)
p_intervals_batch = torch.zeros(batch_size, n_pts, 2, 3).to(device)
p_intervals_batch[mask_inside_cube] = p_intervals
# Calculate ray lengths for the interval points
d_intervals_batch = torch.zeros(batch_size, n_pts, 2).to(device)
norm_ray = torch.norm(ray_direction[mask_inside_cube], dim=-1)
d_intervals_batch[mask_inside_cube] = torch.stack(
[
torch.norm(p_intervals[:, 0] - ray0[mask_inside_cube], dim=-1) / norm_ray,
torch.norm(p_intervals[:, 1] - ray0[mask_inside_cube], dim=-1) / norm_ray,
],
dim=-1
)
# Sort the ray lengths
d_intervals_batch, indices_sort = d_intervals_batch.sort()
p_intervals_batch = p_intervals_batch[torch.arange(batch_size).view(-1, 1, 1),
torch.arange(n_pts).view(1, -1, 1), indices_sort]
return p_intervals_batch, d_intervals_batch, mask_inside_cube
def intersect_camera_rays_with_unit_cube(
pixels, camera_mat, world_mat, scale_mat, padding=0.1, eps=1e-6, use_ray_length_as_depth=True
):
''' Returns the intersection points of ray cast from camera origin to
pixel points p on the image plane.
The function returns the intersection points as well the depth values and
a mask specifying which ray intersects the unit cube.
Args:
pixels (tensor): Pixel points on image plane (range [-1, 1])
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
padding (float): Padding which is applied to the unit cube
eps (float): The epsilon value for numerical stability
'''
batch_size, n_points, _ = pixels.shape
pixel_world = image_points_to_world(pixels, camera_mat, world_mat, scale_mat)
camera_world = origin_to_world(n_points, camera_mat, world_mat, scale_mat)
ray_vector = (pixel_world - camera_world)
p_cube, d_cube, mask_cube = check_ray_intersection_with_unit_cube(
camera_world, ray_vector, padding=padding, eps=eps
)
if not use_ray_length_as_depth:
p_cam = transform_to_camera_space(
p_cube.view(batch_size, -1, 3), camera_mat, world_mat, scale_mat
).view(batch_size, n_points, -1, 3)
d_cube = p_cam[:, :, :, -1]
return p_cube, d_cube, mask_cube
def arange_pixels(resolution=(128, 128), batch_size=1, image_range=(-1., 1.), subsample_to=None):
''' Arranges pixels for given resolution in range image_range.
The function returns the unscaled pixel locations as integers and the
scaled float values.
Args:
resolution (tuple): image resolution
batch_size (int): batch size
image_range (tuple): range of output points (default [-1, 1])
subsample_to (int): if integer and > 0, the points are randomly
subsampled to this value
'''
h, w = resolution
n_points = resolution[0] * resolution[1]
# Arrange pixel location in scale resolution
pixel_locations = torch.meshgrid(torch.arange(0, w), torch.arange(0, h))
pixel_locations = torch.stack([pixel_locations[0], pixel_locations[1]],
dim=-1).long().view(1, -1, 2).repeat(batch_size, 1, 1)
pixel_scaled = pixel_locations.clone().float()
# Shift and scale points to match image_range
scale = (image_range[1] - image_range[0])
loc = scale / 2
pixel_scaled[:, :, 0] = scale * pixel_scaled[:, :, 0] / (w - 1) - loc
pixel_scaled[:, :, 1] = scale * pixel_scaled[:, :, 1] / (h - 1) - loc
# Subsample points if subsample_to is not None and > 0
if (subsample_to is not None and subsample_to > 0 and subsample_to < n_points):
idx = np.random.choice(pixel_scaled.shape[1], size=(subsample_to, ), replace=False)
pixel_scaled = pixel_scaled[:, idx]
pixel_locations = pixel_locations[:, idx]
return pixel_locations, pixel_scaled
def to_pytorch(tensor, return_type=False):
''' Converts input tensor to pytorch.
Args:
tensor (tensor): Numpy or Pytorch tensor
return_type (bool): whether to return input type
'''
is_numpy = False
if type(tensor) == np.ndarray:
tensor = torch.from_numpy(tensor)
is_numpy = True
tensor = tensor.clone()
if return_type:
return tensor, is_numpy
return tensor
def get_mask(tensor):
''' Returns mask of non-illegal values for tensor.
Args:
tensor (tensor): Numpy or Pytorch tensor
'''
tensor, is_numpy = to_pytorch(tensor, True)
mask = ((abs(tensor) != np.inf) & (torch.isnan(tensor) == False))
mask = mask.to(torch.bool)
if is_numpy:
mask = mask.numpy()
return mask
def transform_mesh(mesh, transform):
''' Transforms a mesh with given transformation.
Args:
mesh (trimesh mesh): mesh
transform (tensor): transformation matrix of size 4 x 4
'''
mesh = deepcopy(mesh)
v = np.asarray(mesh.vertices).astype(np.float32)
v_transformed = transform_pointcloud(v, transform)
mesh.vertices = v_transformed
return mesh
def transform_pointcloud(pointcloud, transform):
''' Transforms a point cloud with given transformation.
Args:
pointcloud (tensor): tensor of size N x 3
transform (tensor): transformation of size 4 x 4
'''
assert (transform.shape == (4, 4) and pointcloud.shape[-1] == 3)
pcl, is_numpy = to_pytorch(pointcloud, True)
transform = to_pytorch(transform)
# Transform point cloud to homogen coordinate system
pcl_hom = torch.cat([pcl, torch.ones(pcl.shape[0], 1)], dim=-1).transpose(1, 0)
# Apply transformation to point cloud
pcl_hom_transformed = transform @ pcl_hom
# Transform back to 3D coordinates
pcl_out = pcl_hom_transformed[:3].transpose(1, 0)
if is_numpy:
pcl_out = pcl_out.numpy()
return pcl_out
def transform_points_batch(p, transform):
''' Transform points tensor with given transform.
Args:
p (tensor): tensor of size B x N x 3
transform (tensor): transformation of size B x 4 x 4
'''
device = p.device
assert (transform.shape[1:] == (4, 4) and p.shape[-1] == 3 and p.shape[0] == transform.shape[0])
# Transform points to homogen coordinates
pcl_hom = torch.cat([p, torch.ones(p.shape[0], p.shape[1], 1).to(device)],
dim=-1).transpose(2, 1)
# Apply transformation
pcl_hom_transformed = transform @ pcl_hom
# Transform back to 3D coordinates
pcl_out = pcl_hom_transformed[:, :3].transpose(2, 1)
return pcl_out
def get_tensor_values(
tensor, p, grid_sample=True, mode='nearest', with_mask=False, squeeze_channel_dim=False
):
'''
Returns values from tensor at given location p.
Args:
tensor (tensor): tensor of size B x C x H x W
p (tensor): position values scaled between [-1, 1] and
of size B x N x 2
grid_sample (boolean): whether to use grid sampling
mode (string): what mode to perform grid sampling in
with_mask (bool): whether to return the mask for invalid values
squeeze_channel_dim (bool): whether to squeeze the channel dimension
(only applicable to 1D data)
'''
p = to_pytorch(p)
tensor, is_numpy = to_pytorch(tensor, True)
batch_size, _, h, w = tensor.shape
if grid_sample:
p = p.unsqueeze(1)
values = torch.nn.functional.grid_sample(tensor, p, mode=mode)
values = values.squeeze(2)
values = values.permute(0, 2, 1)
else:
p[:, :, 0] = (p[:, :, 0] + 1) * (w) / 2
p[:, :, 1] = (p[:, :, 1] + 1) * (h) / 2
p = p.long()
values = tensor[torch.arange(batch_size).unsqueeze(-1), :, p[:, :, 1], p[:, :, 0]]
if with_mask:
mask = get_mask(values)
if squeeze_channel_dim:
mask = mask.squeeze(-1)
if is_numpy:
mask = mask.numpy()
if squeeze_channel_dim:
values = values.squeeze(-1)
if is_numpy:
values = values.numpy()
if with_mask:
return values, mask
return values
def transform_to_world(pixels, depth, camera_mat, world_mat, scale_mat, invert=True):
''' Transforms pixel positions p with given depth value d to world coordinates.
Args:
pixels (tensor): pixel tensor of size B x N x 2
depth (tensor): depth tensor of size B x N x 1
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert matrices (default: true)
'''
assert (pixels.shape[-1] == 2)
# Convert to pytorch
pixels, is_numpy = to_pytorch(pixels, True)
depth = to_pytorch(depth)
camera_mat = to_pytorch(camera_mat)
world_mat = to_pytorch(world_mat)
scale_mat = to_pytorch(scale_mat)
# Invert camera matrices
if invert:
camera_mat = torch.inverse(camera_mat)
world_mat = torch.inverse(world_mat)
scale_mat = torch.inverse(scale_mat)
# Transform pixels to homogen coordinates
pixels = pixels.permute(0, 2, 1)
pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1)
# Project pixels into camera space
pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1)
# Transform pixels to world space
p_world = scale_mat @ world_mat @ camera_mat @ pixels
# Transform p_world back to 3D coordinates
p_world = p_world[:, :3].permute(0, 2, 1)
if is_numpy:
p_world = p_world.numpy()
return p_world
def transform_to_camera_space(p_world, camera_mat, world_mat, scale_mat):
''' Transforms world points to camera space.
Args:
p_world (tensor): world points tensor of size B x N x 3
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
'''
batch_size, n_p, _ = p_world.shape
device = p_world.device
# Transform world points to homogen coordinates
p_world = torch.cat([p_world, torch.ones(batch_size, n_p, 1).to(device)],
dim=-1).permute(0, 2, 1)
# Apply matrices to transform p_world to camera space
p_cam = camera_mat @ world_mat @ scale_mat @ p_world
# Transform points back to 3D coordinates
p_cam = p_cam[:, :3].permute(0, 2, 1)
return p_cam
def origin_to_world(n_points, camera_mat, world_mat, scale_mat, invert=True):
''' Transforms origin (camera location) to world coordinates.
Args:
n_points (int): how often the transformed origin is repeated in the
form (batch_size, n_points, 3)
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert the matrices (default: true)
'''
batch_size = camera_mat.shape[0]
device = camera_mat.device
# Create origin in homogen coordinates
p = torch.zeros(batch_size, 4, n_points).to(device)
p[:, -1] = 1.
# Invert matrices
if invert:
camera_mat = torch.inverse(camera_mat)
world_mat = torch.inverse(world_mat)
scale_mat = torch.inverse(scale_mat)
# Apply transformation
p_world = scale_mat @ world_mat @ camera_mat @ p
# Transform points back to 3D coordinates
p_world = p_world[:, :3].permute(0, 2, 1)
return p_world
def image_points_to_world(image_points, camera_mat, world_mat, scale_mat, invert=True):
''' Transforms points on image plane to world coordinates.
In contrast to transform_to_world, no depth value is needed as points on
the image plane have a fixed depth of 1.
Args:
image_points (tensor): image points tensor of size B x N x 2
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert matrices (default: true)
'''
batch_size, n_pts, dim = image_points.shape
assert (dim == 2)
device = image_points.device
d_image = torch.ones(batch_size, n_pts, 1).to(device)
return transform_to_world(
image_points, d_image, camera_mat, world_mat, scale_mat, invert=invert
)
def check_weights(params):
''' Checks weights for illegal values.
Args:
params (tensor): parameter tensor
'''
for k, v in params.items():
if torch.isnan(v).any():
logger_py.warn('NaN Values detected in model weight %s.' % k)
def check_tensor(tensor, tensorname='', input_tensor=None):
''' Checks tensor for illegal values.
Args:
tensor (tensor): tensor
tensorname (string): name of tensor
input_tensor (tensor): previous input
'''
if torch.isnan(tensor).any():
logger_py.warn('Tensor %s contains nan values.' % tensorname)
if input_tensor is not None:
logger_py.warn(f'Input was: {input_tensor}')
def get_prob_from_logits(logits):
''' Returns probabilities for logits
Args:
logits (tensor): logits
'''
odds = np.exp(logits)
probs = odds / (1 + odds)
return probs
def get_logits_from_prob(probs, eps=1e-4):
''' Returns logits for probabilities.
Args:
probs (tensor): probability tensor
eps (float): epsilon value for numerical stability
'''
probs = np.clip(probs, a_min=eps, a_max=1 - eps)
logits = np.log(probs / (1 - probs))
return logits
def chamfer_distance(points1, points2, use_kdtree=True, give_id=False):
''' Returns the chamfer distance for the sets of points.
Args:
points1 (numpy array): first point set
points2 (numpy array): second point set
use_kdtree (bool): whether to use a kdtree
give_id (bool): whether to return the IDs of nearest points
'''
if use_kdtree:
return chamfer_distance_kdtree(points1, points2, give_id=give_id)
else:
return chamfer_distance_naive(points1, points2)
def chamfer_distance_naive(points1, points2):
''' Naive implementation of the Chamfer distance.
Args:
points1 (numpy array): first point set
points2 (numpy array): second point set
'''
assert (points1.size() == points2.size())
batch_size, T, _ = points1.size()
points1 = points1.view(batch_size, T, 1, 3)
points2 = points2.view(batch_size, 1, T, 3)
distances = (points1 - points2).pow(2).sum(-1)
chamfer1 = distances.min(dim=1)[0].mean(dim=1)
chamfer2 = distances.min(dim=2)[0].mean(dim=1)
chamfer = chamfer1 + chamfer2
return chamfer
def chamfer_distance_kdtree(points1, points2, give_id=False):
''' KD-tree based implementation of the Chamfer distance.
Args:
points1 (numpy array): first point set
points2 (numpy array): second point set
give_id (bool): whether to return the IDs of the nearest points
'''
# Points have size batch_size x T x 3
batch_size = points1.size(0)
# First convert points to numpy
points1_np = points1.detach().cpu().numpy()
points2_np = points2.detach().cpu().numpy()
# Get list of nearest neighbors indices
idx_nn_12, _ = get_nearest_neighbors_indices_batch(points1_np, points2_np)
idx_nn_12 = torch.LongTensor(idx_nn_12).to(points1.device)
# Expands it as batch_size x 1 x 3
idx_nn_12_expand = idx_nn_12.view(batch_size, -1, 1).expand_as(points1)
# Get list of nearest neighbors indices
idx_nn_21, _ = get_nearest_neighbors_indices_batch(points2_np, points1_np)
idx_nn_21 = torch.LongTensor(idx_nn_21).to(points1.device)
# Expands it as batch_size x T x 3
idx_nn_21_expand = idx_nn_21.view(batch_size, -1, 1).expand_as(points2)
# Compute nearest neighbors in points2 to points in points1
# points_12[i, j, k] = points2[i, idx_nn_12_expand[i, j, k], k]
points_12 = torch.gather(points2, dim=1, index=idx_nn_12_expand)
# Compute nearest neighbors in points1 to points in points2
# points_21[i, j, k] = points2[i, idx_nn_21_expand[i, j, k], k]
points_21 = torch.gather(points1, dim=1, index=idx_nn_21_expand)
# Compute chamfer distance
chamfer1 = (points1 - points_12).pow(2).sum(2).mean(1)
chamfer2 = (points2 - points_21).pow(2).sum(2).mean(1)
# Take sum
chamfer = chamfer1 + chamfer2
# If required, also return nearest neighbors
if give_id:
return chamfer1, chamfer2, idx_nn_12, idx_nn_21
return chamfer
def get_nearest_neighbors_indices_batch(points_src, points_tgt, k=1):
''' Returns the nearest neighbors for point sets batchwise.
Args:
points_src (numpy array): source points
points_tgt (numpy array): target points
k (int): number of nearest neighbors to return
'''
indices = []
distances = []
for (p1, p2) in zip(points_src, points_tgt):
kdtree = KDTree(p2)
dist, idx = kdtree.query(p1, k=k)
indices.append(idx)
distances.append(dist)
return indices, distances
def normalize_imagenet(x):
''' Normalize input images according to ImageNet standards.
Args:
x (tensor): input images
'''
x = x.clone()
x[:, 0] = (x[:, 0] - 0.485) / 0.229
x[:, 1] = (x[:, 1] - 0.456) / 0.224
x[:, 2] = (x[:, 2] - 0.406) / 0.225
return x
def make_3d_grid(bb_min, bb_max, shape):
''' Makes a 3D grid.
Args:
bb_min (tuple): bounding box minimum
bb_max (tuple): bounding box maximum
shape (tuple): output shape
'''
size = shape[0] * shape[1] * shape[2]
pxs = torch.linspace(bb_min[0], bb_max[0], shape[0])
pys = torch.linspace(bb_min[1], bb_max[1], shape[1])
pzs = torch.linspace(bb_min[2], bb_max[2], shape[2])
pxs = pxs.view(-1, 1, 1).expand(*shape).contiguous().view(size)
pys = pys.view(1, -1, 1).expand(*shape).contiguous().view(size)
pzs = pzs.view(1, 1, -1).expand(*shape).contiguous().view(size)
p = torch.stack([pxs, pys, pzs], dim=1)
return p
def get_occupancy_loss_points(
pixels,
camera_mat,
world_mat,
scale_mat,
depth_image=None,
use_cube_intersection=True,
occupancy_random_normal=False,
depth_range=[0, 2.4]
):
''' Returns 3D points for occupancy loss.
Args:
pixels (tensor): sampled pixels in range [-1, 1]
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
depth_image tensor): if not None, these depth values are used for
initialization (e.g. depth or visual hull depth)
use_cube_intersection (bool): whether to check unit cube intersection
occupancy_random_normal (bool): whether to sample from a Normal
distribution instead of a uniform one
depth_range (float): depth range; important when no cube
intersection is used
'''
device = pixels.device
batch_size, n_points, _ = pixels.shape
if use_cube_intersection:
_, d_cube_intersection, mask_cube = \
intersect_camera_rays_with_unit_cube(
pixels, camera_mat, world_mat, scale_mat, padding=0.,
use_ray_length_as_depth=False)
d_cube = d_cube_intersection[mask_cube]
d_occupancy = torch.rand(batch_size, n_points).to(device) * depth_range[1]
if use_cube_intersection:
d_occupancy[mask_cube] = d_cube[:, 0] + \
torch.rand(d_cube.shape[0]).to(
device) * (d_cube[:, 1] - d_cube[:, 0])
if occupancy_random_normal:
d_occupancy = torch.randn(batch_size, n_points).to(device) \
* (depth_range[1] / 8) + depth_range[1] / 2
if use_cube_intersection:
mean_cube = d_cube.sum(-1) / 2
std_cube = (d_cube[:, 1] - d_cube[:, 0]) / 8
d_occupancy[mask_cube] = mean_cube + \
torch.randn(mean_cube.shape[0]).to(device) * std_cube
if depth_image is not None:
depth_gt, mask_gt_depth = get_tensor_values(
depth_image, pixels, squeeze_channel_dim=True, with_mask=True
)
d_occupancy[mask_gt_depth] = depth_gt[mask_gt_depth]
p_occupancy = transform_to_world(
pixels, d_occupancy.unsqueeze(-1), camera_mat, world_mat, scale_mat
)
return p_occupancy
def get_freespace_loss_points(
pixels, camera_mat, world_mat, scale_mat, use_cube_intersection=True, depth_range=[0, 2.4]
):
''' Returns 3D points for freespace loss.
Args:
pixels (tensor): sampled pixels in range [-1, 1]
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
use_cube_intersection (bool): whether to check unit cube intersection
depth_range (float): depth range; important when no cube
intersection is used
'''
device = pixels.device
batch_size, n_points, _ = pixels.shape
d_freespace = torch.rand(batch_size, n_points).to(device) * \
depth_range[1]
if use_cube_intersection:
_, d_cube_intersection, mask_cube = \
intersect_camera_rays_with_unit_cube(
pixels, camera_mat, world_mat, scale_mat,
use_ray_length_as_depth=False)
d_cube = d_cube_intersection[mask_cube]
d_freespace[mask_cube] = d_cube[:, 0] + \
torch.rand(d_cube.shape[0]).to(
device) * (d_cube[:, 1] - d_cube[:, 0])
p_freespace = transform_to_world(
pixels, d_freespace.unsqueeze(-1), camera_mat, world_mat, scale_mat
)
return p_freespace
def normalize_tensor(tensor, min_norm=1e-5, feat_dim=-1):
''' Normalizes the tensor.
Args:
tensor (tensor): tensor
min_norm (float): minimum norm for numerical stability
feat_dim (int): feature dimension in tensor (default: -1)
'''
norm_tensor = torch.clamp(torch.norm(tensor, dim=feat_dim, keepdim=True), min=min_norm)
normed_tensor = tensor / norm_tensor
return normed_tensor
|