File size: 5,321 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import torch
import numpy as np
import torch.nn.functional as F
from skimage.transform import resize
# Use a non-interactive backend
import matplotlib

matplotlib.use('Agg')

from .renderer import OpenDRenderer, PyRenderer


def iuv_map2img(U_uv, V_uv, Index_UV, AnnIndex=None, uv_rois=None, ind_mapping=None):
    device_id = U_uv.get_device()
    batch_size = U_uv.size(0)
    K = U_uv.size(1)
    heatmap_size = U_uv.size(2)

    Index_UV_max = torch.argmax(Index_UV, dim=1)
    if AnnIndex is None:
        Index_UV_max = Index_UV_max.to(torch.int64)
    else:
        AnnIndex_max = torch.argmax(AnnIndex, dim=1)
        Index_UV_max = Index_UV_max * (AnnIndex_max > 0).to(torch.int64)

    outputs = []

    for batch_id in range(batch_size):
        output = torch.zeros([3, U_uv.size(2), U_uv.size(3)], dtype=torch.float32).cuda(device_id)
        output[0] = Index_UV_max[batch_id].to(torch.float32)
        if ind_mapping is None:
            output[0] /= float(K - 1)
        else:
            for ind in range(len(ind_mapping)):
                output[0][output[0] == ind] = ind_mapping[ind] * (1. / 24.)

        for part_id in range(1, K):
            CurrentU = U_uv[batch_id, part_id]
            CurrentV = V_uv[batch_id, part_id]
            output[1,
                   Index_UV_max[batch_id] == part_id] = CurrentU[Index_UV_max[batch_id] == part_id]
            output[2,
                   Index_UV_max[batch_id] == part_id] = CurrentV[Index_UV_max[batch_id] == part_id]

        if uv_rois is None:
            outputs.append(output.unsqueeze(0))
        else:
            roi_fg = uv_rois[batch_id][1:]
            w = roi_fg[2] - roi_fg[0]
            h = roi_fg[3] - roi_fg[1]

            aspect_ratio = float(w) / h

            if aspect_ratio < 1:
                new_size = [heatmap_size, max(int(heatmap_size * aspect_ratio), 1)]
                output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest')
                paddingleft = int(0.5 * (heatmap_size - new_size[1]))
                output = F.pad(
                    output, pad=(paddingleft, heatmap_size - new_size[1] - paddingleft, 0, 0)
                )
            else:
                new_size = [max(int(heatmap_size / aspect_ratio), 1), heatmap_size]
                output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest')
                paddingtop = int(0.5 * (heatmap_size - new_size[0]))
                output = F.pad(
                    output, pad=(0, 0, paddingtop, heatmap_size - new_size[0] - paddingtop)
                )

            outputs.append(output)

    return torch.cat(outputs, dim=0)


def vis_smpl_iuv(
    image,
    cam_pred,
    vert_pred,
    face,
    pred_uv,
    vert_errors_batch,
    image_name,
    save_path,
    opt,
    ratio=1
):

    # save_path = os.path.join('./notebooks/output/demo_results-wild', ids[f_id][0])
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    # dr_render = OpenDRenderer(ratio=ratio)
    dr_render = PyRenderer()

    focal_length = 5000.
    orig_size = 224.

    if pred_uv is not None:
        iuv_img = iuv_map2img(*pred_uv)

    for draw_i in range(len(cam_pred)):
        err_val = '{:06d}_'.format(int(10 * vert_errors_batch[draw_i]))
        draw_name = err_val + image_name[draw_i]
        K = np.array(
            [[focal_length, 0., orig_size / 2.], [0., focal_length, orig_size / 2.], [0., 0., 1.]]
        )

        # img_orig, img_resized, img_smpl, render_smpl_rgba = dr_render(
        #     image[draw_i],
        #     cam_pred[draw_i],
        #     vert_pred[draw_i],
        #     face,
        #     draw_name[:-4]
        # )
        if opt.save_obj:
            os.makedirs(os.path.join(save_path, 'mesh'), exist_ok=True)
            mesh_filename = os.path.join(save_path, 'mesh', draw_name[:-4] + '.obj')
        else:
            mesh_filename = None

        img_orig = np.moveaxis(image[draw_i], 0, -1)
        img_smpl, img_resized = dr_render(
            vert_pred[draw_i],
            img=img_orig,
            cam=cam_pred[draw_i],
            iwp_mode=True,
            scale_ratio=4.,
            mesh_filename=mesh_filename,
        )

        ones_img = np.ones(img_smpl.shape[:2]) * 255
        ones_img = ones_img[:, :, None]
        img_smpl_rgba = np.concatenate((img_smpl, ones_img), axis=2)
        img_resized_rgba = np.concatenate((img_resized, ones_img), axis=2)

        # render_img = np.concatenate((img_resized_rgba, img_smpl_rgba, render_smpl_rgba * 255), axis=1)
        render_img = np.concatenate((img_resized_rgba, img_smpl_rgba), axis=1)
        render_img[render_img < 0] = 0
        render_img[render_img > 255] = 255
        matplotlib.image.imsave(
            os.path.join(save_path, draw_name[:-4] + '.png'), render_img.astype(np.uint8)
        )

        if pred_uv is not None:
            # estimated global IUV
            global_iuv = iuv_img[draw_i].cpu().numpy()
            global_iuv = np.transpose(global_iuv, (1, 2, 0))
            global_iuv = resize(global_iuv, img_resized.shape[:2])
            global_iuv[global_iuv > 1] = 1
            global_iuv[global_iuv < 0] = 0
            matplotlib.image.imsave(
                os.path.join(save_path, 'pred_uv_' + draw_name[:-4] + '.png'), global_iuv
            )