File size: 11,633 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import torch
import torch.nn as nn
import pytorch_lightning as pl
import torch.nn.functional as F
from torch.autograd import grad
# from fightingcv_attention.attention.SelfAttention import ScaledDotProductAttention
import numpy as np

class SDF2Density(pl.LightningModule):
    def __init__(self):
        super(SDF2Density, self).__init__()

        # learnable parameters beta, with initial value 0.1
        self.beta = nn.Parameter(torch.tensor(0.1))

    def forward(self, sdf):
        # use Laplace CDF to compute the probability
        # temporally use sigmoid to represent laplace CDF
        return 1.0/(self.beta+1e-6)*F.sigmoid(-sdf/(self.beta+1e-6))

class SDF2Occ(pl.LightningModule):
    def __init__(self):
        super(SDF2Occ, self).__init__()

        # learnable parameters beta, with initial value 0.1
        self.beta = nn.Parameter(torch.tensor(0.1))

    def forward(self, sdf):
        # use Laplace CDF to compute the probability
        # temporally use sigmoid to represent laplace CDF
        return F.sigmoid(-sdf/(self.beta+1e-6))


class DeformationMLP(pl.LightningModule):
    def __init__(self,input_dim=64,output_dim=3,activation='LeakyReLU',name=None,opt=None):
        super(DeformationMLP, self).__init__()
        self.name = name
        self.activation = activation
        self.activate = nn.LeakyReLU(inplace=True)
        # self.mlp = nn.Sequential(
        #     nn.Conv1d(input_dim+8+1+3, 64, 1),
        #     nn.LeakyReLU(inplace=True),
        #     nn.Conv1d(64, output_dim, 1),
        #     )
        channels=[input_dim+8+1+3,128, 64, output_dim]
        self.deform_mlp=MLP(filter_channels=channels,
                         name="if",
                         res_layers=opt.res_layers,
                         norm=opt.norm_mlp,
                         last_op=None)  # occupancy
        smplx_dim = 10475
        k=8
        self.per_pt_code = nn.Embedding(smplx_dim,k)

    def forward(self, feature,smpl_vis,pts_id, xyz):
        '''
        feature may include multiple view inputs
        args:
            feature: [B, C_in, N]
        return:
            [B, C_out, N] prediction
        '''
        y = feature
        e_code=self.per_pt_code(pts_id).permute(0,2,1)    # a code that distinguishes each point on different parts of the body
        y=torch.cat([y,xyz,smpl_vis,e_code],1)
        y = self.deform_mlp(y)
        return y

class MLP(pl.LightningModule):

    def __init__(self,
                 filter_channels,
                 name=None,
                 res_layers=[],
                 norm='group',
                 last_op=None):

        super(MLP, self).__init__()

        self.filters = nn.ModuleList()
        self.norms = nn.ModuleList()
        self.res_layers = res_layers
        self.norm = norm
        self.last_op = last_op
        self.name = name
        self.activate = nn.LeakyReLU(inplace=True)

        for l in range(0, len(filter_channels) - 1):
            if l in self.res_layers:
                self.filters.append(
                    nn.Conv1d(filter_channels[l] + filter_channels[0],
                              filter_channels[l + 1], 1))
            else:
                self.filters.append(
                    nn.Conv1d(filter_channels[l], filter_channels[l + 1], 1))

            if l != len(filter_channels) - 2:
                if norm == 'group':
                    self.norms.append(nn.GroupNorm(32, filter_channels[l + 1]))
                elif norm == 'batch':
                    self.norms.append(nn.BatchNorm1d(filter_channels[l + 1]))
                elif norm == 'instance':
                    self.norms.append(nn.InstanceNorm1d(filter_channels[l +
                                                                        1]))
                elif norm == 'weight':
                    self.filters[l] = nn.utils.weight_norm(self.filters[l],
                                                           name='weight')
                    # print(self.filters[l].weight_g.size(),
                    #       self.filters[l].weight_v.size())

    def forward(self, feature):
        '''
        feature may include multiple view inputs
        args:
            feature: [B, C_in, N]
        return:
            [B, C_out, N] prediction
        '''
        y = feature
        tmpy = feature

        for i, f in enumerate(self.filters):

            y = f(y if i not in self.res_layers else torch.cat([y, tmpy], 1))
            if i != len(self.filters) - 1:
                if self.norm not in ['batch', 'group', 'instance']:
                    y = self.activate(y)
                else:
                    y = self.activate(self.norms[i](y))

        if self.last_op is not None:
            y = self.last_op(y)

        return y


# Positional encoding (section 5.1)
class Embedder(pl.LightningModule):
    def __init__(self, **kwargs):
        self.kwargs = kwargs
        self.create_embedding_fn()
        
    def create_embedding_fn(self):
        embed_fns = []
        d = self.kwargs['input_dims']
        out_dim = 0
        if self.kwargs['include_input']:
            embed_fns.append(lambda x : x)
            out_dim += d
            
        max_freq = self.kwargs['max_freq_log2']
        N_freqs = self.kwargs['num_freqs']
        
        if self.kwargs['log_sampling']:
            freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
        else:
            freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
            
        for freq in freq_bands:
            for p_fn in self.kwargs['periodic_fns']:
                embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
                out_dim += d
                    
        self.embed_fns = embed_fns
        self.out_dim = out_dim
        
    def embed(self, inputs):
        return torch.cat([fn(inputs) for fn in self.embed_fns], -1)


def get_embedder(multires=6, i=0):
    if i == -1:
        return nn.Identity(), 3
    
    embed_kwargs = {
                'include_input' : True,
                'input_dims' : 3,
                'max_freq_log2' : multires-1,
                'num_freqs' : multires,
                'log_sampling' : True,
                'periodic_fns' : [torch.sin, torch.cos],
    }
    
    embedder_obj = Embedder(**embed_kwargs)
    embed = lambda x, eo=embedder_obj : eo.embed(x)
    return embed, embedder_obj.out_dim


# Transformer encoder layer
# uses Embedder to add positional encoding to input points
# uses query points as query, deformed points as key, point features as value for attention
class TransformerEncoderLayer(pl.LightningModule):
    def __init__(self, d_model=256, skips=4, multires=6, num_mlp_layers=8, dropout=0.1, opt=None):
        super(TransformerEncoderLayer, self).__init__()

        embed_fn, input_ch = get_embedder(multires=multires)
        self.skips=skips
        self.dropout = dropout
        D=num_mlp_layers
        self.positional_encoding = embed_fn
        self.d_model = d_model
        triplane_dim=64
        opt.mlp_dim[0]=triplane_dim+6+8
        opt.mlp_dim_color[0]=triplane_dim+6+8

        self.geo_mlp=MLP(filter_channels=opt.mlp_dim,
                         name="if",
                         res_layers=opt.res_layers,
                         norm=opt.norm_mlp,
                         last_op=nn.Sigmoid())  # occupancy
        
        self.color_mlp=MLP(filter_channels=opt.mlp_dim_color,
                           name="color_if",
                           res_layers=opt.res_layers,
                           norm=opt.norm_mlp,
                           last_op=nn.Tanh())  # color

        self.softmax = nn.Softmax(dim=-1)



    def forward(self,query_points,key_points,point_features,smpl_feat,training=True,type='shape'):
        # Q=self.positional_encoding(query_points)  #[B,N,39]
        # K=self.positional_encoding(key_points)   #[B,N',39]
        # V=point_features.permute(0,2,1)                                     #[B,N',192]
        # t=0.1
        # #attn_output, attn_output_weights = self.attention(Q.permute(1,0,2), K.permute(1,0,2), V.permute(1,0,2))  #[B,N,192]
        # attn_output_weights = torch.bmm(Q, K.transpose(1, 2))  #[B,N,N']
        # attn_output_weights = self.softmax(attn_output_weights/t)  #[B,N,N']
        # # drop out
        # attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=True)
        # # master feature
        # attn_output = torch.bmm(attn_output_weights, V)  #[B,N,192]

        attn_output=point_features                       # [B,N,192] bary centric interpolation 

        feature=torch.cat([attn_output,smpl_feat],dim=1)               
       
        if type=='shape':
            h=feature          
           
            h=self.geo_mlp(h)   # [B,1,N]
            return h
        
        
        elif type=='color':
            #f=self.head(feature)               #[B,N,512]

            h=feature
           
            h=self.color_mlp(h)   # [B,3,N]
            return h
        elif type=='shape_color':
            h_s=feature
            h_c=feature
           
            h_s=self.geo_mlp(h_s)   # [B,1,N]
           
            h_c=self.color_mlp(h_c)   # [B,3,N]
            
            return h_s,h_c
            



class Swish(pl.LightningModule):
    def __init__(self):
        super(Swish, self).__init__()
 
    def forward(self, x):
        x = x * F.sigmoid(x)
        return x
    








# # Import pytorch modules
# import torch
# import torch.nn as nn
# import torch.nn.functional as F

# Define positional encoding class
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=1000):
        super(PositionalEncoding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)]
        return x

# # Define model parameters
# d_model = 256 # output size of MLP
# nhead = 8 # number of attention heads
# dim_feedforward = 512 # hidden size of MLP
# num_layers = 2 # number of MLP layers
# num_frequencies = 6 # number of frequencies for positional encoding
# dropout = 0.1 # dropout rate

# # Define model components
# pos_encoder = PositionalEncoding(d_model, num_frequencies) # positional encoding layer
# encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout) # transformer encoder layer
# encoder = nn.TransformerEncoder(encoder_layer, num_layers) # transformer encoder
# mlp_geo = nn.Sequential(nn.Linear(3, d_model), nn.ReLU(), nn.Linear(d_model, d_model)) # MLP for geometry
# mlp_alb = nn.Sequential(nn.Linear(3, d_model), nn.ReLU(), nn.Linear(d_model, d_model)) # MLP for albedo
# head_geo = nn.Sequential(nn.Linear(d_model, d_model), nn.ReLU(), nn.Linear(d_model, 3)) # geometry head
# head_alb = nn.Sequential(nn.Linear(d_model, d_model), nn.ReLU(), nn.Linear(d_model, 3), nn.Sigmoid()) # albedo head

# # Define input tensors
# # deformed body points: (batch_size, num_points, 3)
# x = torch.randn(batch_size, num_points, 3)
# # query point positions: (batch_size, num_queries, 3)
# y = torch.randn(batch_size, num_queries, 3)

# # Map both d