Spaces:
Running
on
L40S
Running
on
L40S
File size: 21,083 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
from core.remesh import calc_vertex_normals
from core.opt import MeshOptimizer
from utils.func import make_sparse_camera, make_round_views
from utils.render import NormalsRenderer
import torch.optim as optim
from tqdm import tqdm
from utils.video_utils import write_video
from omegaconf import OmegaConf
import numpy as np
import os
from PIL import Image
import kornia
import torch
import torch.nn as nn
import trimesh
from icecream import ic
from utils.project_mesh import multiview_color_projection, get_cameras_list
from utils.mesh_utils import to_py3d_mesh, rot6d_to_rotmat, tensor2variable
from utils.project_mesh import project_color, get_cameras_list
from utils.smpl_util import SMPLX
from lib.dataset.mesh_util import apply_vertex_mask, part_removal, poisson, keep_largest
from scipy.spatial.transform import Rotation as R
from scipy.spatial import KDTree
import argparse
#### ------------------- config----------------------
bg_color = np.array([1,1,1])
class colorModel(nn.Module):
def __init__(self, renderer, v, f, c):
super().__init__()
self.renderer = renderer
self.v = v
self.f = f
self.colors = nn.Parameter(c, requires_grad=True)
self.bg_color = torch.from_numpy(bg_color).float().to(self.colors.device)
def forward(self, return_mask=False):
rgba = self.renderer.render(self.v, self.f, colors=self.colors)
if return_mask:
return rgba
else:
mask = rgba[..., 3:]
return rgba[..., :3] * mask + self.bg_color * (1 - mask)
def scale_mesh(vert):
min_bbox, max_bbox = vert.min(0)[0], vert.max(0)[0]
center = (min_bbox + max_bbox) / 2
offset = -center
vert = vert + offset
max_dist = torch.max(torch.sqrt(torch.sum(vert**2, dim=1)))
scale = 1.0 / max_dist
return scale, offset
def save_mesh(save_name, vertices, faces, color=None):
trimesh.Trimesh(
vertices.detach().cpu().numpy(),
faces.detach().cpu().numpy(),
vertex_colors=(color.detach().cpu().numpy() * 255).astype(np.uint8) if color is not None else None) \
.export(save_name)
class ReMesh:
def __init__(self, opt, econ_dataset):
self.opt = opt
self.device = torch.device(f"cuda:{opt.gpu_id}" if torch.cuda.is_available() else "cpu")
self.num_view = opt.num_view
self.out_path = opt.res_path
os.makedirs(self.out_path, exist_ok=True)
self.resolution = opt.resolution
self.views = ['front_face', 'front_right', 'right', 'back', 'left', 'front_left' ]
self.weights = torch.Tensor([1., 0.4, 0.8, 1.0, 0.8, 0.4]).view(6,1,1,1).to(self.device)
self.renderer = self.prepare_render()
# pose prediction
self.econ_dataset = econ_dataset
self.smplx_face = torch.Tensor(econ_dataset.faces.astype(np.int64)).long().to(self.device)
def prepare_render(self):
### ------------------- prepare camera and renderer----------------------
mv, proj = make_sparse_camera(self.opt.cam_path, self.opt.scale, views=[0,1,2,4,6,7], device=self.device)
renderer = NormalsRenderer(mv, proj, [self.resolution, self.resolution], device=self.device)
return renderer
def proj_texture(self, fused_images, vertices, faces):
mesh = to_py3d_mesh(vertices, faces)
mesh = mesh.to(self.device)
camera_focal = 1/2
cameras_list = get_cameras_list([0, 45, 90, 180, 270, 315], device=self.device, focal=camera_focal)
mesh = multiview_color_projection(mesh, fused_images, camera_focal=camera_focal, resolution=self.resolution, weights=self.weights.squeeze().cpu().numpy(),
device=self.device, complete_unseen=True, confidence_threshold=0.2, cameras_list=cameras_list)
return mesh
def get_invisible_idx(self, imgs, vertices, faces):
mesh = to_py3d_mesh(vertices, faces)
mesh = mesh.to(self.device)
camera_focal = 1/2
if self.num_view == 6:
cameras_list = get_cameras_list([0, 45, 90, 180, 270, 315], device=self.device, focal=camera_focal)
elif self.num_view == 4:
cameras_list = get_cameras_list([0, 90, 180, 270], device=self.device, focal=camera_focal)
valid_vert_id = []
vertices_colors = torch.zeros((vertices.shape[0], 3)).float().to(self.device)
valid_cnt = torch.zeros((vertices.shape[0])).to(self.device)
for cam, img, weight in zip(cameras_list, imgs, self.weights.squeeze()):
ret = project_color(mesh, cam, img, eps=0.01, resolution=self.resolution, device=self.device)
# print(ret['valid_colors'].shape)
valid_cnt[ret['valid_verts']] += weight
vertices_colors[ret['valid_verts']] += ret['valid_colors']*weight
valid_mask = valid_cnt > 1
invalid_mask = valid_cnt < 1
vertices_colors[valid_mask] /= valid_cnt[valid_mask][:, None]
# visibility
invisible_vert = valid_cnt < 1
invisible_vert_indices = torch.nonzero(invisible_vert).squeeze()
# vertices_colors[invalid_vert] = torch.tensor([1.0, 0.0, 0.0]).float().to("cuda")
return vertices_colors, invisible_vert_indices
def inpaint_missed_colors(self, all_vertices, all_colors, missing_indices):
all_vertices = all_vertices.detach().cpu().numpy()
all_colors = all_colors.detach().cpu().numpy()
missing_indices = missing_indices.detach().cpu().numpy()
non_missing_indices = np.setdiff1d(np.arange(len(all_vertices)), missing_indices)
kdtree = KDTree(all_vertices[non_missing_indices])
for missing_index in missing_indices:
missing_vertex = all_vertices[missing_index]
_, nearest_index = kdtree.query(missing_vertex.reshape(1, -1))
interpolated_color = all_colors[non_missing_indices[nearest_index]]
all_colors[missing_index] = interpolated_color
return torch.from_numpy(all_colors).to(self.device)
def load_training_data(self, case):
###------------------ load target images -------------------------------
kernal = torch.ones(3, 3)
erode_iters = 2
normals = []
masks = []
colors = []
for idx, view in enumerate(self.views):
# for idx in [0,2,3,4]:
normal = Image.open(f'{self.opt.mv_path}/{case}/normals_{view}_masked.png')
# normal = Image.open(f'{data_path}/{case}/normals/{idx:02d}_rgba.png')
normal = normal.convert('RGBA').resize((self.resolution, self.resolution), Image.BILINEAR)
normal = np.array(normal).astype(np.float32) / 255.
mask = normal[..., 3:] # alpha
mask_troch = torch.from_numpy(mask).unsqueeze(0)
for _ in range(erode_iters):
mask_torch = kornia.morphology.erosion(mask_troch, kernal)
mask_erode = mask_torch.squeeze(0).numpy()
masks.append(mask_erode)
normal = normal[..., :3] * mask_erode
normals.append(normal)
color = Image.open(f'{self.opt.mv_path}/{case}/color_{view}_masked.png')
color = color.convert('RGBA').resize((self.resolution, self.resolution), Image.BILINEAR)
color = np.array(color).astype(np.float32) / 255.
color_mask = color[..., 3:] # alpha
# color_dilate = color[..., :3] * color_mask + bg_color * (1 - color_mask)
color_dilate = color[..., :3] * mask_erode + bg_color * (1 - mask_erode)
colors.append(color_dilate)
masks = np.stack(masks, 0)
masks = torch.from_numpy(masks).to(self.device)
normals = np.stack(normals, 0)
target_normals = torch.from_numpy(normals).to(self.device)
colors = np.stack(colors, 0)
target_colors = torch.from_numpy(colors).to(self.device)
return masks, target_colors, target_normals
def preprocess(self, color_pils, normal_pils):
###------------------ load target images -------------------------------
kernal = torch.ones(3, 3)
erode_iters = 2
normals = []
masks = []
colors = []
for normal, color in zip(normal_pils, color_pils):
normal = normal.resize((self.resolution, self.resolution), Image.BILINEAR)
normal = np.array(normal).astype(np.float32) / 255.
mask = normal[..., 3:] # alpha
mask_troch = torch.from_numpy(mask).unsqueeze(0)
for _ in range(erode_iters):
mask_torch = kornia.morphology.erosion(mask_troch, kernal)
mask_erode = mask_torch.squeeze(0).numpy()
masks.append(mask_erode)
normal = normal[..., :3] * mask_erode
normals.append(normal)
color = color.resize((self.resolution, self.resolution), Image.BILINEAR)
color = np.array(color).astype(np.float32) / 255.
color_mask = color[..., 3:] # alpha
# color_dilate = color[..., :3] * color_mask + bg_color * (1 - color_mask)
color_dilate = color[..., :3] * mask_erode + bg_color * (1 - mask_erode)
colors.append(color_dilate)
masks = np.stack(masks, 0)
masks = torch.from_numpy(masks).to(self.device)
normals = np.stack(normals, 0)
target_normals = torch.from_numpy(normals).to(self.device)
colors = np.stack(colors, 0)
target_colors = torch.from_numpy(colors).to(self.device)
return masks, target_colors, target_normals
def optimize_case(self, case, pose, clr_img, nrm_img, opti_texture=True):
case_path = f'{self.out_path}/{case}'
os.makedirs(case_path, exist_ok=True)
if clr_img is not None:
masks, target_colors, target_normals = self.preprocess(clr_img, nrm_img)
else:
masks, target_colors, target_normals = self.load_training_data(case)
# rotation
rz = R.from_euler('z', 180, degrees=True).as_matrix()
ry = R.from_euler('y', 180, degrees=True).as_matrix()
rz = torch.from_numpy(rz).float().to(self.device)
ry = torch.from_numpy(ry).float().to(self.device)
scale, offset = None, None
global_orient = pose["global_orient"] # pymaf_res[idx]['smplx_params']['body_pose'][:, :1, :, :2].to(device).reshape(1, 1, -1) # data["global_orient"]
body_pose = pose["body_pose"] # pymaf_res[idx]['smplx_params']['body_pose'][:, 1:22, :, :2].to(device).reshape(1, 21, -1) # data["body_pose"]
left_hand_pose = pose["left_hand_pose"] # pymaf_res[idx]['smplx_params']['left_hand_pose'][:, :, :, :2].to(device).reshape(1, 15, -1)
right_hand_pose = pose["right_hand_pose"] # pymaf_res[idx]['smplx_params']['right_hand_pose'][:, :, :, :2].to(device).reshape(1, 15, -1)
beta = pose["betas"]
# The optimizer and variables
optimed_pose = torch.tensor(body_pose,
device=self.device,
requires_grad=True) # [1,23,3,3]
optimed_trans = torch.tensor(pose["trans"],
device=self.device,
requires_grad=True) # [3]
optimed_betas = torch.tensor(beta,
device=self.device,
requires_grad=True) # [1,200]
optimed_orient = torch.tensor(global_orient,
device=self.device,
requires_grad=True) # [1,1,3,3]
optimed_rhand = torch.tensor(right_hand_pose,
device=self.device,
requires_grad=True)
optimed_lhand = torch.tensor(left_hand_pose,
device=self.device,
requires_grad=True)
optimed_params = [
{'params': [optimed_lhand, optimed_rhand], 'lr': 1e-3},
{'params': [optimed_betas, optimed_trans, optimed_orient, optimed_pose], 'lr': 3e-3},
]
optimizer_smpl = torch.optim.Adam(
optimed_params,
amsgrad=True,
)
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_smpl,
mode="min",
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=5,
)
smpl_steps = 100
for i in tqdm(range(smpl_steps)):
optimizer_smpl.zero_grad()
# 6d_rot to rot_mat
optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(
-1, 6)).unsqueeze(0)
optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(
-1, 6)).unsqueeze(0)
smpl_verts, smpl_landmarks, smpl_joints = self.econ_dataset.smpl_model(
shape_params=optimed_betas,
expression_params=tensor2variable(pose["exp"], self.device),
body_pose=optimed_pose_mat,
global_pose=optimed_orient_mat,
jaw_pose=tensor2variable(pose["jaw_pose"], self.device),
left_hand_pose=optimed_lhand,
right_hand_pose=optimed_rhand,
)
smpl_verts = smpl_verts + optimed_trans
v_smpl = torch.matmul(torch.matmul(smpl_verts.squeeze(0), rz.T), ry.T)
if scale is None:
scale, offset = scale_mesh(v_smpl.detach())
v_smpl = (v_smpl + offset) * scale * 2
# if i == 0:
# save_mesh(f'{case_path}/{case}_init_smpl.obj', v_smpl, self.smplx_face)
# exit()
normals = calc_vertex_normals(v_smpl, self.smplx_face)
nrm = self.renderer.render(v_smpl, self.smplx_face, normals=normals)
masks_ = nrm[..., 3:]
smpl_mask_loss = ((masks_ - masks) * self.weights).abs().mean()
smpl_nrm_loss = ((nrm[..., :3] - target_normals) * self.weights).abs().mean()
smpl_loss = smpl_mask_loss + smpl_nrm_loss
# smpl_loss = smpl_mask_loss
smpl_loss.backward()
optimizer_smpl.step()
scheduler_smpl.step(smpl_loss)
mesh_smpl = trimesh.Trimesh(vertices=v_smpl.detach().cpu().numpy(), faces=self.smplx_face.detach().cpu().numpy())
nrm_opt = MeshOptimizer(v_smpl.detach(), self.smplx_face.detach(), edge_len_lims=[0.01, 0.1])
vertices, faces = nrm_opt.vertices, nrm_opt.faces
# ###----------------------- optimization iterations-------------------------------------
for i in tqdm(range(self.opt.iters)):
nrm_opt.zero_grad()
normals = calc_vertex_normals(vertices,faces)
nrm = self.renderer.render(vertices,faces, normals=normals)
normals = nrm[..., :3]
# if i < 800:
loss = ((normals-target_normals) * self.weights).abs().mean()
# else:
# loss = ((normals-target_images) * masks).abs().mean()
alpha = nrm[..., 3:]
loss += ((alpha - masks) * self.weights).abs().mean()
loss.backward()
nrm_opt.step()
vertices,faces = nrm_opt.remesh()
if self.opt.debug and i % self.opt.snapshot_step == 0:
import imageio
os.makedirs(f'{case_path}/normals', exist_ok=True)
imageio.imwrite(f'{case_path}/normals/{i:02d}.png',(nrm.detach()[0,:,:,:3]*255).clamp(max=255).type(torch.uint8).cpu().numpy())
# mesh_remeshed = trimesh.Trimesh(vertices=vertices.detach().cpu().numpy(), faces=faces.detach().cpu().numpy())
# mesh_remeshed.export(f'{case_path}/{case}_remeshed_step{i}.obj')
torch.cuda.empty_cache()
mesh_remeshed = trimesh.Trimesh(vertices=vertices.detach().cpu().numpy(), faces=faces.detach().cpu().numpy())
mesh_remeshed.export(f'{case_path}/{case}_remeshed.obj')
# save_mesh(case, vertices, faces)
vertices = vertices.detach()
faces = faces.detach()
#### replace hand
smpl_data = SMPLX()
if self.opt.replace_hand and True in pose['hands_visibility'][0]:
hand_mask = torch.zeros(smpl_data.smplx_verts.shape[0], )
if pose['hands_visibility'][0][0]:
hand_mask.index_fill_(
0, torch.tensor(smpl_data.smplx_mano_vid_dict["left_hand"]), 1.0
)
if pose['hands_visibility'][0][1]:
hand_mask.index_fill_(
0, torch.tensor(smpl_data.smplx_mano_vid_dict["right_hand"]), 1.0
)
hand_mesh = apply_vertex_mask(mesh_smpl.copy(), hand_mask)
body_mesh = part_removal(
mesh_remeshed.copy(),
hand_mesh,
0.08,
self.device,
mesh_smpl.copy(),
region="hand"
)
final = poisson(sum([hand_mesh, body_mesh]), f'{case_path}/{case}_final.obj', 10, False)
else:
final = poisson(mesh_remeshed, f'{case_path}/{case}_final.obj', 10, False)
vertices = torch.from_numpy(final.vertices).float().to(self.device)
faces = torch.from_numpy(final.faces).long().to(self.device)
# Differing from paper, we use the texturing method in Unique3D
masked_color = []
for tmp in clr_img:
# tmp = Image.open(f'{self.opt.mv_path}/{case}/color_{view}_masked.png')
tmp = tmp.resize((self.resolution, self.resolution), Image.BILINEAR)
tmp = np.array(tmp).astype(np.float32) / 255.
masked_color.append(torch.from_numpy(tmp).permute(2, 0, 1).to(self.device))
meshes = self.proj_texture(masked_color, vertices, faces)
vertices = meshes.verts_packed().float()
faces = meshes.faces_packed().long()
colors = meshes.textures.verts_features_packed().float()
save_mesh(f'./{case_path}/result_clr_scale{self.opt.scale}_{case}.obj', vertices, faces, colors)
self.evaluate(vertices, colors, faces, save_path=f'{case_path}/result_clr_scale{self.opt.scale}_{case}.mp4', save_nrm=True)
def evaluate(self, target_vertices, target_colors, target_faces, save_path=None, save_nrm=False):
mv, proj = make_round_views(60, self.opt.scale, device=self.device)
renderer = NormalsRenderer(mv, proj, [512, 512], device=self.device)
target_images = renderer.render(target_vertices,target_faces, colors=target_colors)
target_images = target_images.detach().cpu().numpy()
target_images = target_images[..., :3] * target_images[..., 3:4] + bg_color * (1 - target_images[..., 3:4])
target_images = (target_images.clip(0, 1) * 255).astype(np.uint8)
if save_nrm:
target_normals = calc_vertex_normals(target_vertices, target_faces)
# target_normals[:, 2] *= -1
target_normals = renderer.render(target_vertices, target_faces, normals=target_normals)
target_normals = target_normals.detach().cpu().numpy()
target_normals = target_normals[..., :3] * target_normals[..., 3:4] + bg_color * (1 - target_normals[..., 3:4])
target_normals = (target_normals.clip(0, 1) * 255).astype(np.uint8)
frames = [np.concatenate([img, nrm], 1) for img, nrm in zip(target_images, target_normals)]
else:
frames = [img for img in target_images]
if save_path is not None:
write_video(frames, fps=25, save_path=save_path)
return frames
def run(self):
cases = sorted(os.listdir(self.opt.imgs_path))
for idx in range(len(cases)):
case = cases[idx].split('.')[0]
print(f'Processing {case}')
pose = self.econ_dataset.__getitem__(idx)
v, f, c = self.optimize_case(case, pose, None, None, opti_texture=True)
self.evaluate(v, c, f, save_path=f'{self.opt.res_path}/{case}/result_clr_scale{self.opt.scale}_{case}.mp4', save_nrm=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="path to the yaml configs file", default='config.yaml')
args, extras = parser.parse_known_args()
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
from econdataset import SMPLDataset
dataset_param = {'image_dir': opt.imgs_path, 'seg_dir': None, 'colab': False, 'has_det': True, 'hps_type': 'pixie'}
econdata = SMPLDataset(dataset_param, device='cuda')
EHuman = ReMesh(opt, econdata)
EHuman.run()
|