File size: 4,926 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import torch


def index(feat, uv):
    '''
    :param feat: [B, C, H, W] image features
    :param uv: [B, 2, N] uv coordinates in the image plane, range [0, 1]
    :return: [B, C, N] image features at the uv coordinates
    '''
    uv = uv.transpose(1, 2)  # [B, N, 2]

    (B, N, _) = uv.shape
    C = feat.shape[1]

    if uv.shape[-1] == 3:
        # uv = uv[:,:,[2,1,0]]
        # uv = uv * torch.tensor([1.0,-1.0,1.0]).type_as(uv)[None,None,...]
        uv = uv.unsqueeze(2).unsqueeze(3)  # [B, N, 1, 1, 3]
    else:
        uv = uv.unsqueeze(2)  # [B, N, 1, 2]

    # NOTE: for newer PyTorch, it seems that training results are degraded due to implementation diff in F.grid_sample
    # for old versions, simply remove the aligned_corners argument.
    samples = torch.nn.functional.grid_sample(
        feat, uv, align_corners=True)  # [B, C, N, 1]
    #samples = grid_sample(feat, uv)  # [B, C, N, 1]
    return samples.view(B, C, N)  # [B, C, N]


def grid_sample(image, optical):
    N, C, IH, IW = image.shape
    _, H, W, _ = optical.shape

    ix = optical[..., 0]
    iy = optical[..., 1]

    ix = ((ix + 1) / 2) * (IW-1);
    iy = ((iy + 1) / 2) * (IH-1);
    with torch.no_grad():
        ix_nw = torch.floor(ix);
        iy_nw = torch.floor(iy);
        ix_ne = ix_nw + 1;
        iy_ne = iy_nw;
        ix_sw = ix_nw;
        iy_sw = iy_nw + 1;
        ix_se = ix_nw + 1;
        iy_se = iy_nw + 1;

    nw = (ix_se - ix)    * (iy_se - iy)
    ne = (ix    - ix_sw) * (iy_sw - iy)
    sw = (ix_ne - ix)    * (iy    - iy_ne)
    se = (ix    - ix_nw) * (iy    - iy_nw)
    
    with torch.no_grad():
        torch.clamp(ix_nw, 0, IW-1, out=ix_nw)
        torch.clamp(iy_nw, 0, IH-1, out=iy_nw)

        torch.clamp(ix_ne, 0, IW-1, out=ix_ne)
        torch.clamp(iy_ne, 0, IH-1, out=iy_ne)
 
        torch.clamp(ix_sw, 0, IW-1, out=ix_sw)
        torch.clamp(iy_sw, 0, IH-1, out=iy_sw)
 
        torch.clamp(ix_se, 0, IW-1, out=ix_se)
        torch.clamp(iy_se, 0, IH-1, out=iy_se)

    image = image.view(N, C, IH * IW)


    nw_val = torch.gather(image, 2, (iy_nw * IW + ix_nw).long().view(N, 1, H * W).repeat(1, C, 1))
    ne_val = torch.gather(image, 2, (iy_ne * IW + ix_ne).long().view(N, 1, H * W).repeat(1, C, 1))
    sw_val = torch.gather(image, 2, (iy_sw * IW + ix_sw).long().view(N, 1, H * W).repeat(1, C, 1))
    se_val = torch.gather(image, 2, (iy_se * IW + ix_se).long().view(N, 1, H * W).repeat(1, C, 1))

    out_val = (nw_val.view(N, C, H, W) * nw.view(N, 1, H, W) + 
               ne_val.view(N, C, H, W) * ne.view(N, 1, H, W) +
               sw_val.view(N, C, H, W) * sw.view(N, 1, H, W) +
               se_val.view(N, C, H, W) * se.view(N, 1, H, W))

    return out_val

def orthogonal(points, calibrations, transforms=None):
    '''
    Compute the orthogonal projections of 3D points into the image plane by given projection matrix
    :param points: [B, 3, N] Tensor of 3D points
    :param calibrations: [B, 3, 4] Tensor of projection matrix
    :param transforms: [B, 2, 3] Tensor of image transform matrix
    :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane
    '''
    rot = calibrations[:, :3, :3]
    trans = calibrations[:, :3, 3:4]
    pts = torch.baddbmm(trans, rot, points)  # [B, 3, N]
    if transforms is not None:
        scale = transforms[:2, :2]
        shift = transforms[:2, 2:3]
        pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :])
    return pts


def perspective(points, calibrations, transforms=None):
    '''
    Compute the perspective projections of 3D points into the image plane by given projection matrix
    :param points: [Bx3xN] Tensor of 3D points
    :param calibrations: [Bx3x4] Tensor of projection matrix
    :param transforms: [Bx2x3] Tensor of image transform matrix
    :return: xy: [Bx2xN] Tensor of xy coordinates in the image plane
    '''
    rot = calibrations[:, :3, :3]
    trans = calibrations[:, :3, 3:4]
    homo = torch.baddbmm(trans, rot, points)  # [B, 3, N]
    xy = homo[:, :2, :] / homo[:, 2:3, :]
    if transforms is not None:
        scale = transforms[:2, :2]
        shift = transforms[:2, 2:3]
        xy = torch.baddbmm(shift, scale, xy)

    xyz = torch.cat([xy, homo[:, 2:3, :]], 1)
    return xyz