Spaces:
Running
on
L40S
Running
on
L40S
File size: 24,903 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
# Written by Roy Tseng
#
# Based on:
# --------------------------------------------------------
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import cv2
import numpy as np
import os
import pycocotools.mask as mask_util
import math
import torchvision
from .colormap import colormap
from .keypoints import get_keypoints
from .imutils import normalize_2d_kp
# Use a non-interactive backend
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from mpl_toolkits.mplot3d import Axes3D
from skimage.transform import resize
plt.rcParams['pdf.fonttype'] = 42 # For editing in Adobe Illustrator
_GRAY = (218, 227, 218)
_GREEN = (18, 127, 15)
_WHITE = (255, 255, 255)
def get_colors():
colors = {
'pink': np.array([197, 27, 125]), # L lower leg
'light_pink': np.array([233, 163, 201]), # L upper leg
'light_green': np.array([161, 215, 106]), # L lower arm
'green': np.array([77, 146, 33]), # L upper arm
'red': np.array([215, 48, 39]), # head
'light_red': np.array([252, 146, 114]), # head
'light_orange': np.array([252, 141, 89]), # chest
'purple': np.array([118, 42, 131]), # R lower leg
'light_purple': np.array([175, 141, 195]), # R upper
'light_blue': np.array([145, 191, 219]), # R lower arm
'blue': np.array([69, 117, 180]), # R upper arm
'gray': np.array([130, 130, 130]), #
'white': np.array([255, 255, 255]), #
}
return colors
def kp_connections(keypoints):
kp_lines = [
[keypoints.index('left_eye'), keypoints.index('right_eye')],
[keypoints.index('left_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('right_ear')],
[keypoints.index('left_eye'), keypoints.index('left_ear')],
[keypoints.index('right_shoulder'),
keypoints.index('right_elbow')],
[keypoints.index('right_elbow'),
keypoints.index('right_wrist')],
[keypoints.index('left_shoulder'),
keypoints.index('left_elbow')],
[keypoints.index('left_elbow'),
keypoints.index('left_wrist')],
[keypoints.index('right_hip'), keypoints.index('right_knee')],
[keypoints.index('right_knee'),
keypoints.index('right_ankle')],
[keypoints.index('left_hip'), keypoints.index('left_knee')],
[keypoints.index('left_knee'), keypoints.index('left_ankle')],
[keypoints.index('right_shoulder'),
keypoints.index('left_shoulder')],
[keypoints.index('right_hip'), keypoints.index('left_hip')],
]
return kp_lines
def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps):
"""Convert from the class boxes/segms/keyps format generated by the testing
code.
"""
box_list = [b for b in cls_boxes if len(b) > 0]
if len(box_list) > 0:
boxes = np.concatenate(box_list)
else:
boxes = None
if cls_segms is not None:
segms = [s for slist in cls_segms for s in slist]
else:
segms = None
if cls_keyps is not None:
keyps = [k for klist in cls_keyps for k in klist]
else:
keyps = None
classes = []
for j in range(len(cls_boxes)):
classes += [j] * len(cls_boxes[j])
return boxes, segms, keyps, classes
def vis_bbox_opencv(img, bbox, thick=1):
"""Visualizes a bounding box."""
(x0, y0, w, h) = bbox
x1, y1 = int(x0 + w), int(y0 + h)
x0, y0 = int(x0), int(y0)
cv2.rectangle(img, (x0, y0), (x1, y1), _GREEN, thickness=thick)
return img
def get_class_string(class_index, score, dataset):
class_text = dataset.classes[class_index] if dataset is not None else \
'id{:d}'.format(class_index)
return class_text + ' {:0.2f}'.format(score).lstrip('0')
def vis_one_image(
im,
im_name,
output_dir,
boxes,
segms=None,
keypoints=None,
body_uv=None,
thresh=0.9,
kp_thresh=2,
dpi=200,
box_alpha=0.0,
dataset=None,
show_class=False,
ext='pdf'
):
"""Visual debugging of detections."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if isinstance(boxes, list):
boxes, segms, keypoints, classes = convert_from_cls_format(boxes, segms, keypoints)
if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh:
return
if segms is not None:
masks = mask_util.decode(segms)
color_list = colormap(rgb=True) / 255
dataset_keypoints, _ = get_keypoints()
kp_lines = kp_connections(dataset_keypoints)
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)]
fig = plt.figure(frameon=False)
fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.axis('off')
fig.add_axes(ax)
ax.imshow(im)
# Display in largest to smallest order to reduce occlusion
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
sorted_inds = np.argsort(-areas)
mask_color_id = 0
for i in sorted_inds:
bbox = boxes[i, :4]
score = boxes[i, -1]
if score < thresh:
continue
print(dataset.classes[classes[i]], score)
# show box (off by default, box_alpha=0.0)
ax.add_patch(
plt.Rectangle(
(bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1],
fill=False,
edgecolor='g',
linewidth=0.5,
alpha=box_alpha
)
)
if show_class:
ax.text(
bbox[0],
bbox[1] - 2,
get_class_string(classes[i], score, dataset),
fontsize=3,
family='serif',
bbox=dict(facecolor='g', alpha=0.4, pad=0, edgecolor='none'),
color='white'
)
# show mask
if segms is not None and len(segms) > i:
img = np.ones(im.shape)
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
w_ratio = .4
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio
for c in range(3):
img[:, :, c] = color_mask[c]
e = masks[:, :, i]
_, contour, hier = cv2.findContours(e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
for c in contour:
polygon = Polygon(
c.reshape((-1, 2)),
fill=True,
facecolor=color_mask,
edgecolor='w',
linewidth=1.2,
alpha=0.5
)
ax.add_patch(polygon)
# show keypoints
if keypoints is not None and len(keypoints) > i:
kps = keypoints[i]
plt.autoscale(False)
for l in range(len(kp_lines)):
i1 = kp_lines[l][0]
i2 = kp_lines[l][1]
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
x = [kps[0, i1], kps[0, i2]]
y = [kps[1, i1], kps[1, i2]]
line = ax.plot(x, y)
plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7)
if kps[2, i1] > kp_thresh:
ax.plot(kps[0, i1], kps[1, i1], '.', color=colors[l], markersize=3.0, alpha=0.7)
if kps[2, i2] > kp_thresh:
ax.plot(kps[0, i2], kps[1, i2], '.', color=colors[l], markersize=3.0, alpha=0.7)
# add mid shoulder / mid hip for better visualization
mid_shoulder = (
kps[:2, dataset_keypoints.index('right_shoulder')] +
kps[:2, dataset_keypoints.index('left_shoulder')]
) / 2.0
sc_mid_shoulder = np.minimum(
kps[2, dataset_keypoints.index('right_shoulder')],
kps[2, dataset_keypoints.index('left_shoulder')]
)
mid_hip = (
kps[:2, dataset_keypoints.index('right_hip')] +
kps[:2, dataset_keypoints.index('left_hip')]
) / 2.0
sc_mid_hip = np.minimum(
kps[2, dataset_keypoints.index('right_hip')],
kps[2, dataset_keypoints.index('left_hip')]
)
if (
sc_mid_shoulder > kp_thresh and kps[2, dataset_keypoints.index('nose')] > kp_thresh
):
x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]]
y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]]
line = ax.plot(x, y)
plt.setp(line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7)
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
x = [mid_shoulder[0], mid_hip[0]]
y = [mid_shoulder[1], mid_hip[1]]
line = ax.plot(x, y)
plt.setp(line, color=colors[len(kp_lines) + 1], linewidth=1.0, alpha=0.7)
# DensePose Visualization Starts!!
## Get full IUV image out
if body_uv is not None and len(body_uv) > 1:
IUV_fields = body_uv[1]
#
All_Coords = np.zeros(im.shape)
All_inds = np.zeros([im.shape[0], im.shape[1]])
K = 26
##
inds = np.argsort(boxes[:, 4])
##
for i, ind in enumerate(inds):
entry = boxes[ind, :]
if entry[4] > 0.65:
entry = entry[0:4].astype(int)
####
output = IUV_fields[ind]
####
All_Coords_Old = All_Coords[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2], :]
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2,
0])[All_Coords_Old == 0]
All_Coords[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2], :] = All_Coords_Old
###
CurrentMask = (output[0, :, :] > 0).astype(np.float32)
All_inds_old = All_inds[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2]]
All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i
All_inds[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2]] = All_inds_old
#
All_Coords[:, :, 1:3] = 255. * All_Coords[:, :, 1:3]
All_Coords[All_Coords > 255] = 255.
All_Coords = All_Coords.astype(np.uint8)
All_inds = All_inds.astype(np.uint8)
#
IUV_SaveName = os.path.basename(im_name).split('.')[0] + '_IUV.png'
INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png'
cv2.imwrite(os.path.join(output_dir, '{}'.format(IUV_SaveName)), All_Coords)
cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds)
print('IUV written to: ', os.path.join(output_dir, '{}'.format(IUV_SaveName)))
###
### DensePose Visualization Done!!
#
output_name = os.path.basename(im_name) + '.' + ext
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi)
plt.close('all')
# SMPL Visualization
if body_uv is not None and len(body_uv) > 2:
smpl_fields = body_uv[2]
#
All_Coords = np.zeros(im.shape)
# All_inds = np.zeros([im.shape[0], im.shape[1]])
K = 26
##
inds = np.argsort(boxes[:, 4])
##
for i, ind in enumerate(inds):
entry = boxes[ind, :]
if entry[4] > 0.75:
entry = entry[0:4].astype(int)
center_roi = [(entry[2] + entry[0]) / 2., (entry[3] + entry[1]) / 2.]
####
output, center_out = smpl_fields[ind]
####
x1_img = max(int(center_roi[0] - center_out[0]), 0)
y1_img = max(int(center_roi[1] - center_out[1]), 0)
x2_img = min(int(center_roi[0] - center_out[0]) + output.shape[2], im.shape[1])
y2_img = min(int(center_roi[1] - center_out[1]) + output.shape[1], im.shape[0])
All_Coords_Old = All_Coords[y1_img:y2_img, x1_img:x2_img, :]
x1_out = max(int(center_out[0] - center_roi[0]), 0)
y1_out = max(int(center_out[1] - center_roi[1]), 0)
x2_out = x1_out + (x2_img - x1_img)
y2_out = y1_out + (y2_img - y1_img)
output = output[:, y1_out:y2_out, x1_out:x2_out]
# All_Coords_Old = All_Coords[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2],
# :]
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2,
0])[All_Coords_Old == 0]
All_Coords[y1_img:y2_img, x1_img:x2_img, :] = All_Coords_Old
###
# CurrentMask = (output[0, :, :] > 0).astype(np.float32)
# All_inds_old = All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]]
# All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i
# All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] = All_inds_old
#
All_Coords = 255. * All_Coords
All_Coords[All_Coords > 255] = 255.
All_Coords = All_Coords.astype(np.uint8)
image_stacked = im[:, :, ::-1]
image_stacked[All_Coords > 20] = All_Coords[All_Coords > 20]
# All_inds = All_inds.astype(np.uint8)
#
SMPL_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPL.png'
smpl_image_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPLimg.png'
# INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png'
cv2.imwrite(os.path.join(output_dir, '{}'.format(SMPL_SaveName)), All_Coords)
cv2.imwrite(os.path.join(output_dir, '{}'.format(smpl_image_SaveName)), image_stacked)
# cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds)
print('SMPL written to: ', os.path.join(output_dir, '{}'.format(SMPL_SaveName)))
###
### SMPL Visualization Done!!
#
output_name = os.path.basename(im_name) + '.' + ext
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi)
plt.close('all')
def vis_batch_image_with_joints(
batch_image,
batch_joints,
batch_joints_vis,
file_name=None,
nrow=8,
padding=0,
pad_value=1,
add_text=True
):
'''
batch_image: [batch_size, channel, height, width]
batch_joints: [batch_size, num_joints, 3],
batch_joints_vis: [batch_size, num_joints, 1],
}
'''
grid = torchvision.utils.make_grid(batch_image, nrow, padding, True, pad_value=pad_value)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
ndarr = ndarr.copy()
nmaps = batch_image.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height = int(batch_image.size(2) + padding)
width = int(batch_image.size(3) + padding)
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
joints = batch_joints[k]
joints_vis = batch_joints_vis[k]
flip = 1
count = -1
for joint, joint_vis in zip(joints, joints_vis):
joint[0] = x * width + padding + joint[0]
joint[1] = y * height + padding + joint[1]
flip *= -1
count += 1
if joint_vis[0]:
try:
if flip > 0:
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [255, 0, 0], -1)
else:
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [0, 255, 0], -1)
if add_text:
cv2.putText(
ndarr, str(count), (int(joint[0]), int(joint[1])),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1
)
except Exception as e:
print(e)
k = k + 1
return ndarr
def vis_img_3Djoint(batch_img, joints, pairs=None, joint_group=None):
n_sample = joints.shape[0]
max_show = 2
if n_sample > max_show:
if batch_img is not None:
batch_img = batch_img[:max_show]
joints = joints[:max_show]
n_sample = max_show
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484']
# color = ['g', 'b', 'r']
def m_l_r(idx):
if joint_group is None:
return 1
for i in range(len(joint_group)):
if idx in joint_group[i]:
return i
for i in range(n_sample):
if batch_img is not None:
# ax_img = plt.subplot(n_sample, 2, i * 2 + 1)
ax_img = plt.subplot(2, n_sample, i + 1)
img_np = batch_img[i].cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C
ax_img.imshow(img_np)
ax_img.set_axis_off()
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1, projection='3d')
else:
ax_pred = plt.subplot(1, n_sample, i + 1, projection='3d')
plot_kps = joints[i]
if plot_kps.shape[1] > 2:
if joint_group is None:
ax_pred.scatter(plot_kps[:, 2], plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.')
ax_pred.scatter(
plot_kps[0, 2], plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.'
)
else:
for j in range(len(joint_group)):
ax_pred.scatter(
plot_kps[joint_group[j], 2],
plot_kps[joint_group[j], 0],
plot_kps[joint_group[j], 1],
s=30,
c=color[j],
marker='s'
)
if pairs is not None:
for p in pairs:
ax_pred.plot(
plot_kps[p, 2],
plot_kps[p, 0],
plot_kps[p, 1],
c=color[m_l_r(p[1])],
linewidth=2
)
# ax_pred.set_axis_off()
ax_pred.set_aspect('equal')
set_axes_equal(ax_pred)
ax_pred.xaxis.set_ticks([])
ax_pred.yaxis.set_ticks([])
ax_pred.zaxis.set_ticks([])
def vis_img_2Djoint(batch_img, joints, pairs=None, joint_group=None):
n_sample = joints.shape[0]
max_show = 2
if n_sample > max_show:
if batch_img is not None:
batch_img = batch_img[:max_show]
joints = joints[:max_show]
n_sample = max_show
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484']
# color = ['g', 'b', 'r']
def m_l_r(idx):
if joint_group is None:
return 1
for i in range(len(joint_group)):
if idx in joint_group[i]:
return i
for i in range(n_sample):
if batch_img is not None:
# ax_img = plt.subplot(n_sample, 2, i * 2 + 1)
ax_img = plt.subplot(2, n_sample, i + 1)
img_np = batch_img[i].cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C
ax_img.imshow(img_np)
ax_img.set_axis_off()
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1)
else:
ax_pred = plt.subplot(1, n_sample, i + 1)
plot_kps = joints[i]
if plot_kps.shape[1] > 1:
if joint_group is None:
ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=300, c='#00B0F0', marker='.')
# ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.')
# ax_pred.scatter(plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.')
else:
for j in range(len(joint_group)):
ax_pred.scatter(
plot_kps[joint_group[j], 0],
plot_kps[joint_group[j], 1],
s=100,
c=color[j],
marker='o'
)
if pairs is not None:
for p in pairs:
ax_pred.plot(
plot_kps[p, 0],
plot_kps[p, 1],
c=color[m_l_r(p[1])],
linestyle=':',
linewidth=3
)
ax_pred.set_axis_off()
ax_pred.set_aspect('equal')
ax_pred.axis('equal')
# set_axes_equal(ax_pred)
ax_pred.xaxis.set_ticks([])
ax_pred.yaxis.set_ticks([])
# ax_pred.zaxis.set_ticks([])
def draw_skeleton(image, kp_2d, dataset='common', unnormalize=True, thickness=2):
if unnormalize:
kp_2d[:, :2] = normalize_2d_kp(kp_2d[:, :2], 224, inv=True)
kp_2d[:, 2] = kp_2d[:, 2] > 0.3
kp_2d = np.array(kp_2d, dtype=int)
rcolor = get_colors()['red'].tolist()
pcolor = get_colors()['green'].tolist()
lcolor = get_colors()['blue'].tolist()
common_lr = [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0]
for idx, pt in enumerate(kp_2d):
if pt[2] > 0: # if visible
if idx % 2 == 0:
color = rcolor
else:
color = pcolor
cv2.circle(image, (pt[0], pt[1]), 4, color, -1)
# cv2.putText(image, f'{idx}', (pt[0]+1, pt[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 255, 0))
if dataset == 'common' and len(kp_2d) != 15:
return image
skeleton = eval(f'kp_utils.get_{dataset}_skeleton')()
for i, (j1, j2) in enumerate(skeleton):
if kp_2d[j1, 2] > 0 and kp_2d[j2, 2] > 0: # if visible
if dataset == 'common':
color = rcolor if common_lr[i] == 0 else lcolor
else:
color = lcolor if i % 2 == 0 else rcolor
pt1, pt2 = (kp_2d[j1, 0], kp_2d[j1, 1]), (kp_2d[j2, 0], kp_2d[j2, 1])
cv2.line(image, pt1=pt1, pt2=pt2, color=color, thickness=thickness)
return image
# https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to
def set_axes_equal(ax):
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Input
ax: a matplotlib axis, e.g., as output from plt.gca().
'''
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
# The plot bounding box is a sphere in the sense of the infinity
# norm, hence I call half the max range the plot radius.
plot_radius = 0.5 * max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|