Spaces:
Running
on
L40S
Running
on
L40S
File size: 14,119 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.dataset.mesh_util import projection
from lib.common.render import Render
import numpy as np
import torch
from torchvision.utils import make_grid
from pytorch3d import _C
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from pytorch3d.structures import Pointclouds
from PIL import Image
from typing import Tuple
from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals
from pytorch3d.ops.packed_to_padded import packed_to_padded
_DEFAULT_MIN_TRIANGLE_AREA: float = 5e-3
# PointFaceDistance
class _PointFaceDistance(Function):
"""
Torch autograd Function wrapper PointFaceDistance Cuda implementation
"""
@staticmethod
def forward(
ctx,
points,
points_first_idx,
tris,
tris_first_idx,
max_points,
min_triangle_area=_DEFAULT_MIN_TRIANGLE_AREA,
):
"""
Args:
ctx: Context object used to calculate gradients.
points: FloatTensor of shape `(P, 3)`
points_first_idx: LongTensor of shape `(N,)` indicating the first point
index in each example in the batch
tris: FloatTensor of shape `(T, 3, 3)` of triangular faces. The `t`-th
triangular face is spanned by `(tris[t, 0], tris[t, 1], tris[t, 2])`
tris_first_idx: LongTensor of shape `(N,)` indicating the first face
index in each example in the batch
max_points: Scalar equal to maximum number of points in the batch
min_triangle_area: (float, defaulted) Triangles of area less than this
will be treated as points/lines.
Returns:
dists: FloatTensor of shape `(P,)`, where `dists[p]` is the squared
euclidean distance of `p`-th point to the closest triangular face
in the corresponding example in the batch
idxs: LongTensor of shape `(P,)` indicating the closest triangular face
in the corresponding example in the batch.
`dists[p]` is
`d(points[p], tris[idxs[p], 0], tris[idxs[p], 1], tris[idxs[p], 2])`
where `d(u, v0, v1, v2)` is the distance of point `u` from the triangular
face `(v0, v1, v2)`
"""
dists, idxs = _C.point_face_dist_forward(
points,
points_first_idx,
tris,
tris_first_idx,
max_points,
min_triangle_area,
)
ctx.save_for_backward(points, tris, idxs)
ctx.min_triangle_area = min_triangle_area
return dists, idxs
@staticmethod
@once_differentiable
def backward(ctx, grad_dists):
grad_dists = grad_dists.contiguous()
points, tris, idxs = ctx.saved_tensors
min_triangle_area = ctx.min_triangle_area
grad_points, grad_tris = _C.point_face_dist_backward(
points, tris, idxs, grad_dists, min_triangle_area
)
return grad_points, None, grad_tris, None, None, None
def _rand_barycentric_coords(
size1, size2, dtype: torch.dtype, device: torch.device
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Helper function to generate random barycentric coordinates which are uniformly
distributed over a triangle.
Args:
size1, size2: The number of coordinates generated will be size1*size2.
Output tensors will each be of shape (size1, size2).
dtype: Datatype to generate.
device: A torch.device object on which the outputs will be allocated.
Returns:
w0, w1, w2: Tensors of shape (size1, size2) giving random barycentric
coordinates
"""
uv = torch.rand(2, size1, size2, dtype=dtype, device=device)
u, v = uv[0], uv[1]
u_sqrt = u.sqrt()
w0 = 1.0 - u_sqrt
w1 = u_sqrt * (1.0 - v)
w2 = u_sqrt * v
w = torch.cat([w0[..., None], w1[..., None], w2[..., None]], dim=2)
return w
def sample_points_from_meshes(meshes, num_samples: int = 10000):
"""
Convert a batch of meshes to a batch of pointclouds by uniformly sampling
points on the surface of the mesh with probability proportional to the
face area.
Args:
meshes: A Meshes object with a batch of N meshes.
num_samples: Integer giving the number of point samples per mesh.
return_normals: If True, return normals for the sampled points.
return_textures: If True, return textures for the sampled points.
Returns:
3-element tuple containing
- **samples**: FloatTensor of shape (N, num_samples, 3) giving the
coordinates of sampled points for each mesh in the batch. For empty
meshes the corresponding row in the samples array will be filled with 0.
- **normals**: FloatTensor of shape (N, num_samples, 3) giving a normal vector
to each sampled point. Only returned if return_normals is True.
For empty meshes the corresponding row in the normals array will
be filled with 0.
- **textures**: FloatTensor of shape (N, num_samples, C) giving a C-dimensional
texture vector to each sampled point. Only returned if return_textures is True.
For empty meshes the corresponding row in the textures array will
be filled with 0.
Note that in a future releases, we will replace the 3-element tuple output
with a `Pointclouds` datastructure, as follows
.. code-block:: python
Pointclouds(samples, normals=normals, features=textures)
"""
if meshes.isempty():
raise ValueError("Meshes are empty.")
verts = meshes.verts_packed()
if not torch.isfinite(verts).all():
raise ValueError("Meshes contain nan or inf.")
faces = meshes.faces_packed()
mesh_to_face = meshes.mesh_to_faces_packed_first_idx()
num_meshes = len(meshes)
num_valid_meshes = torch.sum(meshes.valid) # Non empty meshes.
# Initialize samples tensor with fill value 0 for empty meshes.
samples = torch.zeros((num_meshes, num_samples, 3), device=meshes.device)
# Only compute samples for non empty meshes
with torch.no_grad():
areas, _ = mesh_face_areas_normals(verts, faces) # Face areas can be zero.
max_faces = meshes.num_faces_per_mesh().max().item()
areas_padded = packed_to_padded(areas, mesh_to_face[meshes.valid], max_faces) # (N, F)
# TODO (gkioxari) Confirm multinomial bug is not present with real data.
samples_face_idxs = areas_padded.multinomial(
num_samples, replacement=True
) # (N, num_samples)
samples_face_idxs += mesh_to_face[meshes.valid].view(num_valid_meshes, 1)
# Randomly generate barycentric coords.
# w (N, num_samples, 3)
# sample_face_idxs (N, num_samples)
# samples_verts (N, num_samples, 3, 3)
samples_bw = _rand_barycentric_coords(num_valid_meshes, num_samples, verts.dtype, verts.device)
sample_verts = verts[faces][samples_face_idxs]
samples[meshes.valid] = (sample_verts * samples_bw[..., None]).sum(dim=-2)
return samples, samples_face_idxs, samples_bw
def econ_point_mesh_distance(meshes, pcls, weighted=True):
if len(meshes) != len(pcls):
raise ValueError("meshes and pointclouds must be equal sized batches")
# packed representation for pointclouds
points = pcls.points_packed() # (P, 3)
points_first_idx = pcls.cloud_to_packed_first_idx()
max_points = pcls.num_points_per_cloud().max().item()
# packed representation for faces
verts_packed = meshes.verts_packed()
faces_packed = meshes.faces_packed()
tris = verts_packed[faces_packed] # (T, 3, 3)
tris_first_idx = meshes.mesh_to_faces_packed_first_idx()
# point to face distance: shape (P,)
point_to_face, idxs = _PointFaceDistance.apply(
points, points_first_idx, tris, tris_first_idx, max_points, 5e-3
)
if weighted:
# weight each example by the inverse of number of points in the example
point_to_cloud_idx = pcls.packed_to_cloud_idx() # (sum(P_i),)
num_points_per_cloud = pcls.num_points_per_cloud() # (N,)
weights_p = num_points_per_cloud.gather(0, point_to_cloud_idx)
weights_p = 1.0 / weights_p.float()
point_to_face = torch.sqrt(point_to_face) * weights_p
return point_to_face, idxs
class Evaluator:
def __init__(self, device):
self.render = Render(size=512, device=device)
self.device = device
def set_mesh(self, result_dict, scale=True):
for k, v in result_dict.items():
setattr(self, k, v)
if scale:
self.verts_pr -= self.recon_size / 2.0
self.verts_pr /= self.recon_size / 2.0
self.verts_gt = projection(self.verts_gt, self.calib)
self.verts_gt[:, 1] *= -1
self.render.load_meshes(self.verts_pr, self.faces_pr)
self.src_mesh = self.render.meshes
self.render.load_meshes(self.verts_gt, self.faces_gt)
self.tgt_mesh = self.render.meshes
def calculate_normal_consist(self, normal_path):
self.render.meshes = self.src_mesh
src_normal_imgs = self.render.get_image(cam_type="all", bg="black")
self.render.meshes = self.tgt_mesh
tgt_normal_imgs = self.render.get_image(cam_type="all", bg="black")
error_list = []
if len(src_normal_imgs)>4:
# for i in range(len(src_normal_imgs)):
src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=6,padding=1) # [0,1]
tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=6,padding=1) # [0,1]
# src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
# tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)
src_norm[src_norm == 0.0] = 1.0
tgt_norm[tgt_norm == 0.0] = 1.0
src_normal_arr /= src_norm
tgt_normal_arr /= tgt_norm
# sim_mask = self.get_laplacian_2d(tgt_normal_arr).to(self.device)
src_normal_arr = (src_normal_arr + 1.0) * 0.5
tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5
error = ((
(src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4
#error_list.append(error)
normal_img = Image.fromarray(
(torch.cat([src_normal_arr, tgt_normal_arr], dim=1).permute(
1, 2, 0).detach().cpu().numpy() * 255.0).astype(np.uint8))
normal_img.save(normal_path)
return error
else:
src_normal_arr = make_grid(torch.cat(src_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
tgt_normal_arr = make_grid(torch.cat(tgt_normal_imgs, dim=0), nrow=4,padding=0) # [0,1]
src_norm = torch.norm(src_normal_arr, dim=0, keepdim=True)
tgt_norm = torch.norm(tgt_normal_arr, dim=0, keepdim=True)
src_norm[src_norm == 0.0] = 1.0
tgt_norm[tgt_norm == 0.0] = 1.0
src_normal_arr /= src_norm
tgt_normal_arr /= tgt_norm
# sim_mask = self.get_laplacian_2d(tgt_normal_arr).to(self.device)
src_normal_arr = (src_normal_arr + 1.0) * 0.5
tgt_normal_arr = (tgt_normal_arr + 1.0) * 0.5
error = ((
(src_normal_arr - tgt_normal_arr)**2).sum(dim=0).mean()) * 4
return error
def calculate_chamfer_p2s(self, num_samples=1000):
samples_tgt, _, _ = sample_points_from_meshes(self.tgt_mesh, num_samples)
samples_src, _, _ = sample_points_from_meshes(self.src_mesh, num_samples)
tgt_points = Pointclouds(samples_tgt)
src_points = Pointclouds(samples_src)
p2s_dist = point_mesh_distance(self.src_mesh, tgt_points)[0].sum() * 100.0
chamfer_dist = (
point_mesh_distance(self.tgt_mesh, src_points)[0].sum() * 100.0 + p2s_dist
) * 0.5
return chamfer_dist, p2s_dist
def calc_acc(self, output, target, thres=0.5, use_sdf=False):
# # remove the surface points with thres
# non_surf_ids = (target != thres)
# output = output[non_surf_ids]
# target = target[non_surf_ids]
with torch.no_grad():
output = output.masked_fill(output < thres, 0.0)
output = output.masked_fill(output > thres, 1.0)
if use_sdf:
target = target.masked_fill(target < thres, 0.0)
target = target.masked_fill(target > thres, 1.0)
acc = output.eq(target).float().mean()
# iou, precison, recall
output = output > thres
target = target > thres
union = output | target
inter = output & target
_max = torch.tensor(1.0).to(output.device)
union = max(union.sum().float(), _max)
true_pos = max(inter.sum().float(), _max)
vol_pred = max(output.sum().float(), _max)
vol_gt = max(target.sum().float(), _max)
return acc, true_pos / union, true_pos / vol_pred, true_pos / vol_gt
|