Spaces:
Running
on
L40S
Running
on
L40S
File size: 33,991 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.renderer.mesh import load_fit_body, compute_normal_batch
from lib.dataset.body_model import TetraSMPLModel
from lib.common.render import Render
from lib.dataset.mesh_util import *
from lib.pare.pare.utils.geometry import rotation_matrix_to_angle_axis
from lib.net.nerf_util import sample_ray_h36m, get_wsampling_points
from termcolor import colored
import os.path as osp
import numpy as np
from PIL import Image
import random
import os, cv2
import trimesh
import torch
import vedo
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import trimesh
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
cape_gender = {
"male": [
'00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284',
'03375', '03394'
],
"female": ['00134', '00159', '03223', '03331', '03383']
}
class PIFuDataset():
def __init__(self, cfg, split='train', vis=False):
self.split = split
self.root = cfg.root
self.bsize = cfg.batch_size
self.overfit = cfg.overfit
# for debug, only used in visualize_sampling3D
self.vis = vis
self.opt = cfg.dataset
self.datasets = self.opt.types
self.input_size = self.opt.input_size
self.scales = self.opt.scales
self.workers = cfg.num_threads
self.prior_type = cfg.net.prior_type
self.noise_type = self.opt.noise_type
self.noise_scale = self.opt.noise_scale
noise_joints = [4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21]
self.noise_smpl_idx = []
self.noise_smplx_idx = []
for idx in noise_joints:
self.noise_smpl_idx.append(idx * 3)
self.noise_smpl_idx.append(idx * 3 + 1)
self.noise_smpl_idx.append(idx * 3 + 2)
self.noise_smplx_idx.append((idx - 1) * 3)
self.noise_smplx_idx.append((idx - 1) * 3 + 1)
self.noise_smplx_idx.append((idx - 1) * 3 + 2)
self.use_sdf = cfg.sdf
self.sdf_clip = cfg.sdf_clip
# [(feat_name, channel_num),...]
self.in_geo = [item[0] for item in cfg.net.in_geo]
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
self.in_total = self.in_geo + self.in_nml
self.in_total_dim = self.in_geo_dim + self.in_nml_dim
self.base_keys = ["smpl_verts", "smpl_faces"]
self.feat_names = cfg.net.smpl_feats
self.feat_keys = self.base_keys + [f"smpl_{feat_name}" for feat_name in self.feat_names]
if self.split == 'train':
self.rotations = np.arange(0, 360, 360 / self.opt.rotation_num).astype(np.int32)
else:
self.rotations = range(0, 360, 120)
self.datasets_dict = {}
for dataset_id, dataset in enumerate(self.datasets):
mesh_dir = None
smplx_dir = None
dataset_dir = osp.join(self.root, dataset)
mesh_dir = osp.join(dataset_dir, "scans")
smplx_dir = osp.join(dataset_dir, "smplx")
smpl_dir = osp.join(dataset_dir, "smpl")
self.datasets_dict[dataset] = {
"smplx_dir": smplx_dir,
"smpl_dir": smpl_dir,
"mesh_dir": mesh_dir,
"scale": self.scales[dataset_id]
}
if split == 'train':
self.datasets_dict[dataset].update(
{"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)})
else:
self.datasets_dict[dataset].update(
{"subjects": np.loadtxt(osp.join(dataset_dir, "test.txt"), dtype=str)})
self.subject_list = self.get_subject_list(split)
self.smplx = SMPLX()
# PIL to tensor
self.image_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# PIL to tensor
self.mask_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.0,), (1.0,))
])
self.device = torch.device(f"cuda:{cfg.gpus[0]}")
self.render = Render(size=512, device=self.device)
self.UV_RENDER='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_RENDER'
self.UV_MASK='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_MASK'
self.UV_POS='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_POS'
self.UV_NORMAL='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/UV_NORMAL'
self.IMAGE_MASK='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/MASK'
self.PARAM='/sdb/zzc/zzc/paper_models/PIFu-master/PIFu-master/training_data/PARAM'
self.depth='./data/thuman2_36views'
def render_normal(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_rgb_image()
def get_subject_list(self, split):
subject_list = []
for dataset in self.datasets:
split_txt = osp.join(self.root, dataset, f'{split}.txt')
if osp.exists(split_txt):
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
else:
full_txt = osp.join(self.root, dataset, 'all.txt')
print(f"split {full_txt} into train/val/test")
full_lst = np.loadtxt(full_txt, dtype=str)
full_lst = [dataset + "/" + item for item in full_lst]
[train_lst, test_lst, val_lst] = np.split(full_lst, [
500,
500 + 5,
])
np.savetxt(full_txt.replace("all", "train"), train_lst, fmt="%s")
np.savetxt(full_txt.replace("all", "test"), test_lst, fmt="%s")
np.savetxt(full_txt.replace("all", "val"), val_lst, fmt="%s")
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
if self.split != 'test':
subject_list += subject_list[:self.bsize - len(subject_list) % self.bsize]
print(colored(f"total: {len(subject_list)}", "yellow"))
random.shuffle(subject_list)
# subject_list = ["thuman2/0008"]
return subject_list
def __len__(self):
return len(self.subject_list) * len(self.rotations)
def __getitem__(self, index):
# only pick the first data if overfitting
if self.overfit:
index = 0
rid = index % len(self.rotations)
mid = index // len(self.rotations)
rotation = self.rotations[rid]
subject = self.subject_list[mid].split("/")[1]
dataset = self.subject_list[mid].split("/")[0]
render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])
if dataset=='thuman2':
old_folder="/".join([dataset + f"_{self.opt.rotation_num}views_nosideview", subject])
else:
old_folder=render_folder
# add uv map path
# use pifu dataset
uv_render_path=os.path.join(self.UV_RENDER,subject,'%d_%d_%02d.jpg'%(rotation,0,0))
uv_mask_path = os.path.join(self.UV_MASK, subject, '%02d.png' % (0))
uv_pos_path = os.path.join(self.UV_POS, subject, '%02d.exr' % (0))
uv_normal_path = os.path.join(self.UV_NORMAL, subject, '%02d.png' % (0))
image_mask_path=os.path.join(self.IMAGE_MASK,subject,'%d_%d_%02d.png'%(rotation,0,0))
param_path=os.path.join(self.PARAM, subject,'%d_%d_%02d.npy'%(rotation,0,0))
depth_path=os.path.join(self.depth,subject,"depth_F",'%03d.png'%(rotation))
# setup paths
data_dict = {
'dataset': dataset,
'subject': subject,
'rotation': rotation,
'scale': self.datasets_dict[dataset]["scale"],
'calib_path': osp.join(self.root, render_folder, 'calib', f'{rotation:03d}.txt'),
'image_path': osp.join(self.root, render_folder, 'render', f'{rotation:03d}.png'),
'smpl_path': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
'vis_path': osp.join(self.root, old_folder, 'vis', f'{rotation:03d}.pt'),
'uv_render_path': osp.join(self.root, render_folder, 'uv_color', f'{rotation:03d}.png'),
'uv_mask_path': uv_mask_path,
'uv_pos_path': uv_pos_path,
'uv_normal_path': osp.join(self.root, render_folder, 'uv_normal', '%02d.png' % (0)),
'image_mask_path':image_mask_path,
'param_path':param_path,
'depth_path':depth_path,
}
if dataset == 'thuman2':
data_dict.update({
'mesh_path':
osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}/{subject}.obj"),
'smplx_path':
#osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
osp.join("./data/thuman2/smplx/", f"{subject}.obj"),
'smpl_param':
osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.pkl"),
'smplx_param':
osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.pkl"),
})
elif dataset == 'cape':
data_dict.update({
'mesh_path': osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
'smpl_param': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.npz"),
})
# load training data
data_dict.update(self.load_calib(data_dict))
# image/normal/depth loader
for name, channel in zip(self.in_total, self.in_total_dim):
if f'{name}_path' not in data_dict.keys():
data_dict.update({
f'{name}_path': osp.join(self.root, render_folder, name, f'{rotation:03d}.png')
})
# tensor update
if os.path.exists(data_dict[f'{name}_path']):
data_dict.update(
{name: self.imagepath2tensor(data_dict[f'{name}_path'], channel, inv=False)})
# if name=='normal_F' and dataset == 'thuman2':
# right_angle=(rotation+270)%360
# left_angle=(rotation+90)%360
# normal_right_path=osp.join(self.root, render_folder, name, f'{right_angle:03d}.png')
# normal_left_path=osp.join(self.root, render_folder, name, f'{left_angle:03d}.png')
# data_dict.update(
# {'normal_R': self.imagepath2tensor(normal_right_path, channel, inv=False)})
# data_dict.update(
# {'normal_L': self.imagepath2tensor(normal_left_path, channel, inv=False)})
if name=='T_normal_F' and dataset == 'thuman2':
normal_right_path=osp.join(self.root, render_folder, "T_normal_R", f'{rotation:03d}.png')
normal_left_path=osp.join(self.root, render_folder, "T_normal_L", f'{rotation:03d}.png')
data_dict.update(
{'T_normal_R': self.imagepath2tensor(normal_right_path, channel, inv=False)})
data_dict.update(
{'T_normal_L': self.imagepath2tensor(normal_left_path, channel, inv=False)})
data_dict.update(self.load_mesh(data_dict))
data_dict.update(
self.get_sampling_geo(data_dict, is_valid=self.split == "val", is_sdf=self.use_sdf))
data_dict.update(self.load_smpl(data_dict, self.vis))
if self.prior_type == 'pamir':
data_dict.update(self.load_smpl_voxel(data_dict))
if (self.split != 'test') and (not self.vis):
del data_dict['verts']
del data_dict['faces']
if not self.vis:
del data_dict['mesh']
path_keys = [key for key in data_dict.keys() if '_path' in key or '_dir' in key]
for key in path_keys:
del data_dict[key]
return data_dict
def imagepath2tensor(self, path, channel=3, inv=False):
rgba = Image.open(path).convert('RGBA')
# remove CAPE's noisy outliers using OpenCV's inpainting
if "cape" in path and 'T_' not in path:
mask = (cv2.imread(path.replace(path.split("/")[-2], "mask"), 0) > 1)
img = np.asarray(rgba)[:, :, :3]
fill_mask = ((mask & (img.sum(axis=2) == 0))).astype(np.uint8)
image = Image.fromarray(
cv2.inpaint(img * mask[..., None], fill_mask, 3, cv2.INPAINT_TELEA))
mask = Image.fromarray(mask)
else:
mask = rgba.split()[-1]
image = rgba.convert('RGB')
image = self.image_to_tensor(image)
mask = self.mask_to_tensor(mask)
image = (image * mask)[:channel]
return (image * (0.5 - inv) * 2.0).float()
def load_calib(self, data_dict):
calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
calib_mat = np.matmul(intrinsic, extrinsic)
calib_mat = torch.from_numpy(calib_mat).float()
return {'calib': calib_mat}
def load_mesh(self, data_dict):
mesh_path = data_dict['mesh_path']
scale = data_dict['scale']
verts, faces = obj_loader(mesh_path)
mesh = HoppeMesh(verts * scale, faces)
return {
'mesh': mesh,
'verts': torch.as_tensor(verts * scale).float(),
'faces': torch.as_tensor(faces).long()
}
def add_noise(self, beta_num, smpl_pose, smpl_betas, noise_type, noise_scale, type, hashcode):
np.random.seed(hashcode)
if type == 'smplx':
noise_idx = self.noise_smplx_idx
else:
noise_idx = self.noise_smpl_idx
if 'beta' in noise_type and noise_scale[noise_type.index("beta")] > 0.0:
smpl_betas += (np.random.rand(beta_num) -
0.5) * 2.0 * noise_scale[noise_type.index("beta")]
smpl_betas = smpl_betas.astype(np.float32)
if 'pose' in noise_type and noise_scale[noise_type.index("pose")] > 0.0:
smpl_pose[noise_idx] += (np.random.rand(len(noise_idx)) -
0.5) * 2.0 * np.pi * noise_scale[noise_type.index("pose")]
smpl_pose = smpl_pose.astype(np.float32)
if type == 'smplx':
return torch.as_tensor(smpl_pose[None, ...]), torch.as_tensor(smpl_betas[None, ...])
else:
return smpl_pose, smpl_betas
def compute_smpl_verts(self, data_dict, noise_type=None, noise_scale=None):
dataset = data_dict['dataset']
smplx_dict = {}
smplx_param = np.load(data_dict['smplx_param'], allow_pickle=True)
smplx_pose = smplx_param["body_pose"] # [1,63]
smplx_betas = smplx_param["betas"] # [1,10]
smplx_pose, smplx_betas = self.add_noise(
smplx_betas.shape[1],
smplx_pose[0],
smplx_betas[0],
noise_type,
noise_scale,
type='smplx',
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8))
smplx_out, _ = load_fit_body(fitted_path=data_dict['smplx_param'],
scale=self.datasets_dict[dataset]['scale'],
smpl_type='smplx',
smpl_gender='male',
noise_dict=dict(betas=smplx_betas, body_pose=smplx_pose))
smplx_dict.update({
"type": "smplx",
"gender": 'male',
"body_pose": torch.as_tensor(smplx_pose),
"betas": torch.as_tensor(smplx_betas)
})
return smplx_out.vertices, smplx_dict
def compute_voxel_verts(self, data_dict, noise_type=None, noise_scale=None):
smpl_param = np.load(data_dict["smpl_param"], allow_pickle=True)
if data_dict['dataset'] == 'cape':
pid = data_dict['subject'].split("-")[0]
gender = "male" if pid in cape_gender["male"] else "female"
smpl_pose = smpl_param['pose'].flatten()
smpl_betas = np.zeros((1, 10))
else:
gender = 'male'
smpl_pose = rotation_matrix_to_angle_axis(torch.as_tensor(
smpl_param["full_pose"][0])).numpy()
smpl_betas = smpl_param["betas"]
smpl_path = osp.join(self.smplx.model_dir, f"smpl/SMPL_{gender.upper()}.pkl")
tetra_path = osp.join(self.smplx.tedra_dir, f"tetra_{gender}_adult_smpl.npz")
smpl_model = TetraSMPLModel(smpl_path, tetra_path, "adult")
smpl_pose, smpl_betas = self.add_noise(
smpl_model.beta_shape[0],
smpl_pose.flatten(),
smpl_betas[0],
noise_type,
noise_scale,
type="smpl",
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8),
)
smpl_model.set_params(pose=smpl_pose.reshape(-1, 3),
beta=smpl_betas,
trans=smpl_param["transl"])
if data_dict['dataset'] == 'cape':
verts = np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) * 100.0
else:
verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added], axis=0) *
smpl_param["scale"] +
smpl_param["translation"]) * self.datasets_dict[data_dict["dataset"]]["scale"]
faces = (np.loadtxt(
osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"),
dtype=np.int32,
) - 1)
pad_v_num = int(8000 - verts.shape[0])
pad_f_num = int(25100 - faces.shape[0])
verts = np.pad(verts, ((0, pad_v_num), (0, 0)), mode="constant",
constant_values=0.0).astype(np.float32)
faces = np.pad(faces, ((0, pad_f_num), (0, 0)), mode="constant",
constant_values=0.0).astype(np.int32)
return verts, faces, pad_v_num, pad_f_num
def densely_sample(self, verts, faces):
# TODO: subdivided the triangular mesh
new_vertices,new_faces,index=trimesh.remesh.subdivide(verts,faces)
return new_vertices, torch.LongTensor(new_faces)
...
def load_smpl(self, data_dict, vis=False, densely_sample=False):
smpl_type = "smplx" if ('smplx_path' in data_dict.keys() and
os.path.exists(data_dict['smplx_path'])) else "smpl"
return_dict = {}
if 'smplx_param' in data_dict.keys() and \
os.path.exists(data_dict['smplx_param']) and \
sum(self.noise_scale) > 0.0:
smplx_verts, smplx_dict = self.compute_smpl_verts(data_dict, self.noise_type,
self.noise_scale)
smplx_faces = torch.as_tensor(self.smplx.smplx_faces).long()
smplx_cmap = torch.as_tensor(np.load(self.smplx.cmap_vert_path)).float()
else:
smplx_vis = torch.load(data_dict['vis_path']).float()
return_dict.update({'smpl_vis': smplx_vis})
# noise_factor = 20
# noise = np.random.normal(loc=0, scale=noise_factor)
smplx_verts = rescale_smpl(data_dict[f"{smpl_type}_path"], scale=100.0)
smplx_faces = torch.as_tensor(getattr(self.smplx, f"{smpl_type}_faces")).long()
smplx_cmap = self.smplx.cmap_smpl_vids(smpl_type)
if densely_sample:
smplx_verts,smplx_faces=self.densely_sample(smplx_verts,smplx_faces)
smplx_verts = projection(smplx_verts, data_dict['calib']).float()
# get smpl_vis
if "smpl_vis" not in return_dict.keys() and "smpl_vis" in self.feat_keys:
(xy, z) = torch.as_tensor(smplx_verts).to(self.device).split([2, 1], dim=1)
smplx_vis = get_visibility(xy, z, torch.as_tensor(smplx_faces).to(self.device).long())
return_dict['smpl_vis'] = smplx_vis
if "smpl_norm" not in return_dict.keys() and "smpl_norm" in self.feat_keys:
# get smpl_norms
smplx_norms = compute_normal_batch(smplx_verts.unsqueeze(0),
smplx_faces.unsqueeze(0))[0]
return_dict["smpl_norm"] = smplx_norms
if "smpl_cmap" not in return_dict.keys() and "smpl_cmap" in self.feat_keys:
return_dict["smpl_cmap"] = smplx_cmap
sample_num=smplx_verts.shape[0]
verts_ids=np.arange(smplx_verts.shape[0])
sample_ids=torch.LongTensor(verts_ids)
return_dict.update({
'smpl_verts': smplx_verts,
'smpl_faces': smplx_faces,
'smpl_cmap': smplx_cmap,
'smpl_sample_id':sample_ids,
})
if vis:
(xy, z) = torch.as_tensor(smplx_verts).to(self.device).split([2, 1], dim=1)
smplx_vis = get_visibility(xy, z, torch.as_tensor(smplx_faces).to(self.device).long())
T_normal_F, T_normal_B = self.render_normal(
(smplx_verts * torch.tensor(np.array([1.0, -1.0, 1.0]))).to(self.device),
smplx_faces.to(self.device))
return_dict.update({
"T_normal_F": T_normal_F.squeeze(0),
"T_normal_B": T_normal_B.squeeze(0)
})
query_points = projection(data_dict['samples_geo'], data_dict['calib']).float()
smplx_sdf, smplx_norm, smplx_cmap, smplx_vis = cal_sdf_batch(
smplx_verts.unsqueeze(0).to(self.device),
smplx_faces.unsqueeze(0).to(self.device),
smplx_cmap.unsqueeze(0).to(self.device),
smplx_vis.unsqueeze(0).to(self.device),
query_points.unsqueeze(0).contiguous().to(self.device))
return_dict.update({
'smpl_feat':
torch.cat((smplx_sdf[0].detach().cpu(), smplx_cmap[0].detach().cpu(),
smplx_norm[0].detach().cpu(), smplx_vis[0].detach().cpu()),
dim=1)
})
return return_dict
def load_smpl_voxel(self, data_dict):
smpl_verts, smpl_faces, pad_v_num, pad_f_num = self.compute_voxel_verts(
data_dict, self.noise_type, self.noise_scale) # compute using smpl model
smpl_verts = projection(smpl_verts, data_dict['calib'])
smpl_verts *= 0.5
return {
'voxel_verts': smpl_verts,
'voxel_faces': smpl_faces,
'pad_v_num': pad_v_num,
'pad_f_num': pad_f_num
}
def get_sampling_geo(self, data_dict, is_valid=False, is_sdf=False):
#assert 0
mesh = data_dict['mesh']
calib = data_dict['calib']
# Samples are around the true surface with an offset
n_samples_surface = 4*self.opt.num_sample_geo
vert_ids = np.arange(mesh.verts.shape[0])
samples_surface_ids = np.random.choice(vert_ids, n_samples_surface, replace=True)
samples_surface = mesh.verts[samples_surface_ids, :]
# Sampling offsets are random noise with constant scale (15cm - 20cm)
offset = np.random.normal(scale=self.opt.sigma_geo, size=(n_samples_surface, 1))
samples_surface += mesh.vert_normals[samples_surface_ids, :] * offset
# samples=np.concatenate([samples_surface], 0)
# np.random.shuffle(samples)
# Uniform samples in [-1, 1]
calib_inv = np.linalg.inv(calib)
n_samples_space = self.opt.num_sample_geo // 4
samples_space_img = 2.0 * np.random.rand(n_samples_space, 3) - 1.0
samples_space = projection(samples_space_img, calib_inv)
samples = np.concatenate([samples_surface, samples_space], 0)
np.random.shuffle(samples)
# labels: in->1.0; out->0.0.
inside = mesh.contains(samples)
inside_samples = samples[inside >= 0.5]
outside_samples = samples[inside < 0.5]
nin = inside_samples.shape[0]
if nin > self.opt.num_sample_geo // 2:
inside_samples = inside_samples[:self.opt.num_sample_geo // 2]
outside_samples = outside_samples[:self.opt.num_sample_geo // 2]
else:
outside_samples = outside_samples[:(self.opt.num_sample_geo - nin)]
samples = np.concatenate([inside_samples, outside_samples])
labels = np.concatenate(
[np.ones(inside_samples.shape[0]),
np.zeros(outside_samples.shape[0])])
samples = torch.from_numpy(samples).float()
labels = torch.from_numpy(labels).float()
# sample color
if not self.datasets[0]=='cape':
# get color
uv_render_path = data_dict['uv_render_path']
uv_mask_path = data_dict['uv_mask_path']
uv_pos_path = data_dict['uv_pos_path']
uv_normal_path = data_dict['uv_normal_path']
# Segmentation mask for the uv render.
# [H, W] bool
uv_mask = cv2.imread(uv_mask_path)
uv_mask = uv_mask[:, :, 0] != 0
# UV render. each pixel is the color of the point.
# [H, W, 3] 0 ~ 1 float
uv_render = cv2.imread(uv_render_path)
uv_render = cv2.cvtColor(uv_render, cv2.COLOR_BGR2RGB) / 255.0
# Normal render. each pixel is the surface normal of the point.
# [H, W, 3] -1 ~ 1 float
uv_normal = cv2.imread(uv_normal_path)
uv_normal = cv2.cvtColor(uv_normal, cv2.COLOR_BGR2RGB) / 255.0
uv_normal = 2.0 * uv_normal - 1.0
# Position render. each pixel is the xyz coordinates of the point
uv_pos = cv2.imread(uv_pos_path, 2 | 4)[:, :, ::-1]
### In these few lines we flattern the masks, positions, and normals
uv_mask = uv_mask.reshape((-1)) # 512*512
uv_pos = uv_pos.reshape((-1, 3))
uv_render = uv_render.reshape((-1, 3)) # 512*512,3
uv_normal = uv_normal.reshape((-1, 3))
surface_points = uv_pos[uv_mask]
surface_colors = uv_render[uv_mask]
surface_normal = uv_normal[uv_mask]
# Samples are around the true surface with an offset
n_samples_surface = self.opt.num_sample_color
if n_samples_space>surface_points.shape[0]:
print(surface_points.shape[0])
print( uv_pos_path)
assert 0
sample_list = random.sample(range(0, surface_points.shape[0] - 1), n_samples_surface)
surface_points=surface_points[sample_list].T
surface_colors=surface_colors[sample_list].T
surface_normal=surface_normal[sample_list].T
# Samples are around the true surface with an offset
normal = torch.Tensor(surface_normal).float()
samples_surface = torch.Tensor(surface_points).float() \
+ torch.normal(mean=torch.zeros((1, normal.size(1))), std=self.opt.sigma_color).expand_as(normal) * normal
sample_color=samples_surface.T
rgbs_color=(surface_colors-0.5)*2 # range -1 - 1
rgbs_color=rgbs_color.T
colors = torch.from_numpy(rgbs_color).float()
# center.unsqueeze(0).float()
return {'samples_geo': samples, 'labels_geo': labels,"samples_color":sample_color,"color_labels":colors}
else:
return {'samples_geo': samples, 'labels_geo': labels}
def get_param(self,data_dict):
W=512
H=512
param_path = data_dict['param_path']
# loading calibration data
param = np.load(param_path, allow_pickle=True)
# pixel unit / world unit
ortho_ratio = param.item().get('ortho_ratio')
# world unit / model unit
scale = param.item().get('scale')
# camera center world coordinate
center = param.item().get('center')
# model rotation
R = param.item().get('R')
translate = -np.matmul(R, center).reshape(3, 1)
extrinsic = np.concatenate([R, translate], axis=1)
extrinsic = np.concatenate([extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
# Match camera space to image pixel space
scale_intrinsic = np.identity(4)
scale_intrinsic[0, 0] = scale / ortho_ratio
scale_intrinsic[1, 1] = -scale / ortho_ratio
scale_intrinsic[2, 2] = scale / ortho_ratio
# Match image pixel space to image uv space
uv_intrinsic = np.identity(4)
uv_intrinsic[0, 0] = 1.0 / float(W // 2)
uv_intrinsic[1, 1] = 1.0 / float(W // 2)
uv_intrinsic[2, 2] = 1.0 / float(W // 2)
return scale_intrinsic[:3,:3],R,translate.numpy(),center
def get_extrinsics(self,data_dict):
calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
return intrinsic.astype(np.float32)
def visualize_sampling3D(self, data_dict, mode='vis'):
# create plot
vp = vedo.Plotter(title="", size=(1500, 1500), axes=0, bg='white')
vis_list = []
assert mode in ['vis', 'sdf', 'normal', 'cmap', 'occ']
# sdf-1 cmap-3 norm-3 vis-1
if mode == 'vis':
labels = data_dict[f'smpl_feat'][:, [-1]] # visibility
colors = np.concatenate([labels, labels, labels], axis=1)
elif mode == 'occ':
labels = data_dict[f'labels_geo'][..., None] # occupancy
colors = np.concatenate([labels, labels, labels], axis=1)
elif mode == 'sdf':
labels = data_dict[f'smpl_feat'][:, [0]] # sdf
labels -= labels.min()
labels /= labels.max()
colors = np.concatenate([labels, labels, labels], axis=1)
elif mode == 'normal':
labels = data_dict[f'smpl_feat'][:, -4:-1] # normal
colors = (labels + 1.0) * 0.5
elif mode == 'cmap':
labels = data_dict[f'smpl_feat'][:, -7:-4] # colormap
colors = np.array(labels)
points = projection(data_dict['samples_geo'], data_dict['calib'])
verts = projection(data_dict['verts'], data_dict['calib'])
points[:, 1] *= -1
verts[:, 1] *= -1
# create a mesh
mesh = trimesh.Trimesh(verts, data_dict['faces'], process=True)
mesh.visual.vertex_colors = [128.0, 128.0, 128.0, 255.0]
vis_list.append(mesh)
if 'voxel_verts' in data_dict.keys():
print(colored("voxel verts", "green"))
voxel_verts = data_dict['voxel_verts'] * 2.0
voxel_faces = data_dict['voxel_faces']
voxel_verts[:, 1] *= -1
voxel = trimesh.Trimesh(voxel_verts,
voxel_faces[:, [0, 2, 1]],
process=False,
maintain_order=True)
voxel.visual.vertex_colors = [0.0, 128.0, 0.0, 255.0]
vis_list.append(voxel)
if 'smpl_verts' in data_dict.keys():
print(colored("smpl verts", "green"))
smplx_verts = data_dict['smpl_verts']
smplx_faces = data_dict['smpl_faces']
smplx_verts[:, 1] *= -1
smplx = trimesh.Trimesh(smplx_verts,
smplx_faces[:, [0, 2, 1]],
process=False,
maintain_order=True)
smplx.visual.vertex_colors = [128.0, 128.0, 0.0, 255.0]
vis_list.append(smplx)
# create a picure
img_pos = [1.0, 0.0, -1.0,-1.0,1.0]
for img_id, img_key in enumerate(['normal_F', 'image', 'T_normal_B','T_normal_L','T_normal_R']):
image_arr = (data_dict[img_key].detach().cpu().permute(1, 2, 0).numpy() +
1.0) * 0.5 * 255.0
image_dim = image_arr.shape[0]
if img_id==3:
image=vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, -1.0).rotateY(90)
elif img_id==4:
image=vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, 1.0).rotateY(90)
else:
image = vedo.Picture(image_arr).scale(2.0 / image_dim).pos(-1.0, -1.0, img_pos[img_id])
vis_list.append(image)
# create a pointcloud
pc = vedo.Points(points, r=1)
vis_list.append(pc)
vp.show(*vis_list, bg="white", axes=1.0, interactive=True)
|