Spaces:
Running
on
L40S
Running
on
L40S
File size: 23,747 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
import numpy as np
import torch
import torch.nn.functional as F
import math
from collections import OrderedDict
import os
from scipy.ndimage import morphology
import PIL.Image as pil_img
from skimage.io import imsave
import cv2
import pickle
# ---------------------------- process/generate vertices, normals, faces
def generate_triangles(h, w, mask=None):
'''
quad layout:
0 1 ... w-1
w w+1
.
w*h
'''
triangles = []
margin = 0
for x in range(margin, w - 1 - margin):
for y in range(margin, h - 1 - margin):
triangle0 = [y * w + x, y * w + x + 1, (y + 1) * w + x]
triangle1 = [y * w + x + 1, (y + 1) * w + x + 1, (y + 1) * w + x]
triangles.append(triangle0)
triangles.append(triangle1)
triangles = np.array(triangles)
triangles = triangles[:, [0, 2, 1]]
return triangles
def face_vertices(vertices, faces):
"""
borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + \
(torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
def vertex_normals(vertices, faces):
"""
borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of vertices, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
normals = torch.zeros(bs * nv, 3).to(device)
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) *
nv)[:, None, None] # expanded faces
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()]
faces = faces.reshape(-1, 3)
vertices_faces = vertices_faces.reshape(-1, 3, 3)
normals.index_add_(
0, faces[:, 1].long(),
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1],
vertices_faces[:, 0] - vertices_faces[:, 1]))
normals.index_add_(
0, faces[:, 2].long(),
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2],
vertices_faces[:, 1] - vertices_faces[:, 2]))
normals.index_add_(
0, faces[:, 0].long(),
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0],
vertices_faces[:, 2] - vertices_faces[:, 0]))
normals = F.normalize(normals, eps=1e-6, dim=1)
normals = normals.reshape((bs, nv, 3))
# pytorch only supports long and byte tensors for indexing
return normals
def batch_orth_proj(X, camera):
'''
X is N x num_verts x 3
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
# borrowed from https://github.com/vchoutas/expose
DIM_FLIP = np.array([1, -1, -1], dtype=np.float32)
DIM_FLIP_TENSOR = torch.tensor([1, -1, -1], dtype=torch.float32)
def flip_pose(pose_vector, pose_format='rot-mat'):
if pose_format == 'aa':
if torch.is_tensor(pose_vector):
dim_flip = DIM_FLIP_TENSOR
else:
dim_flip = DIM_FLIP
return (pose_vector.reshape(-1, 3) * dim_flip).reshape(-1)
elif pose_format == 'rot-mat':
rot_mats = pose_vector.reshape(-1, 9).clone()
rot_mats[:, [1, 2, 3, 6]] *= -1
return rot_mats.view_as(pose_vector)
else:
raise ValueError(f'Unknown rotation format: {pose_format}')
# -------------------------------------- image processing
# ref: https://torchgeometry.readthedocs.io/en/latest/_modules/kornia/filters
def gaussian(window_size, sigma):
def gauss_fcn(x):
return -(x - window_size // 2)**2 / float(2 * sigma**2)
gauss = torch.stack(
[torch.exp(torch.tensor(gauss_fcn(x))) for x in range(window_size)])
return gauss / gauss.sum()
def get_gaussian_kernel(kernel_size: int, sigma: float):
r"""Function that returns Gaussian filter coefficients.
Args:
kernel_size (int): filter size. It should be odd and positive.
sigma (float): gaussian standard deviation.
Returns:
Tensor: 1D tensor with gaussian filter coefficients.
Shape:
- Output: :math:`(\text{kernel_size})`
Examples::
>>> kornia.image.get_gaussian_kernel(3, 2.5)
tensor([0.3243, 0.3513, 0.3243])
>>> kornia.image.get_gaussian_kernel(5, 1.5)
tensor([0.1201, 0.2339, 0.2921, 0.2339, 0.1201])
"""
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \
kernel_size <= 0:
raise TypeError("kernel_size must be an odd positive integer. "
"Got {}".format(kernel_size))
window_1d = gaussian(kernel_size, sigma)
return window_1d
def get_gaussian_kernel2d(kernel_size, sigma):
r"""Function that returns Gaussian filter matrix coefficients.
Args:
kernel_size (Tuple[int, int]): filter sizes in the x and y direction.
Sizes should be odd and positive.
sigma (Tuple[int, int]): gaussian standard deviation in the x and y
direction.
Returns:
Tensor: 2D tensor with gaussian filter matrix coefficients.
Shape:
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)`
Examples::
>>> kornia.image.get_gaussian_kernel2d((3, 3), (1.5, 1.5))
tensor([[0.0947, 0.1183, 0.0947],
[0.1183, 0.1478, 0.1183],
[0.0947, 0.1183, 0.0947]])
>>> kornia.image.get_gaussian_kernel2d((3, 5), (1.5, 1.5))
tensor([[0.0370, 0.0720, 0.0899, 0.0720, 0.0370],
[0.0462, 0.0899, 0.1123, 0.0899, 0.0462],
[0.0370, 0.0720, 0.0899, 0.0720, 0.0370]])
"""
if not isinstance(kernel_size, tuple) or len(kernel_size) != 2:
raise TypeError(
"kernel_size must be a tuple of length two. Got {}".format(
kernel_size))
if not isinstance(sigma, tuple) or len(sigma) != 2:
raise TypeError(
"sigma must be a tuple of length two. Got {}".format(sigma))
ksize_x, ksize_y = kernel_size
sigma_x, sigma_y = sigma
kernel_x = get_gaussian_kernel(ksize_x, sigma_x)
kernel_y = get_gaussian_kernel(ksize_y, sigma_y)
kernel_2d = torch.matmul(kernel_x.unsqueeze(-1),
kernel_y.unsqueeze(-1).t())
return kernel_2d
def gaussian_blur(x, kernel_size=(5, 5), sigma=(1.3, 1.3)):
b, c, h, w = x.shape
kernel = get_gaussian_kernel2d(kernel_size, sigma).to(x.device).to(x.dtype)
kernel = kernel.repeat(c, 1, 1, 1)
padding = [(k - 1) // 2 for k in kernel_size]
return F.conv2d(x, kernel, padding=padding, stride=1, groups=c)
def _compute_binary_kernel(window_size):
r"""Creates a binary kernel to extract the patches. If the window size
is HxW will create a (H*W)xHxW kernel.
"""
window_range = window_size[0] * window_size[1]
kernel: torch.Tensor = torch.zeros(window_range, window_range)
for i in range(window_range):
kernel[i, i] += 1.0
return kernel.view(window_range, 1, window_size[0], window_size[1])
def median_blur(x, kernel_size=(3, 3)):
b, c, h, w = x.shape
kernel = _compute_binary_kernel(kernel_size).to(x.device).to(x.dtype)
kernel = kernel.repeat(c, 1, 1, 1)
padding = [(k - 1) // 2 for k in kernel_size]
features = F.conv2d(x, kernel, padding=padding, stride=1, groups=c)
features = features.view(b, c, -1, h, w)
median = torch.median(features, dim=2)[0]
return median
def get_laplacian_kernel2d(kernel_size: int):
r"""Function that returns Gaussian filter matrix coefficients.
Args:
kernel_size (int): filter size should be odd.
Returns:
Tensor: 2D tensor with laplacian filter matrix coefficients.
Shape:
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)`
Examples::
>>> kornia.image.get_laplacian_kernel2d(3)
tensor([[ 1., 1., 1.],
[ 1., -8., 1.],
[ 1., 1., 1.]])
>>> kornia.image.get_laplacian_kernel2d(5)
tensor([[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., -24., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.]])
"""
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \
kernel_size <= 0:
raise TypeError("ksize must be an odd positive integer. Got {}".format(
kernel_size))
kernel = torch.ones((kernel_size, kernel_size))
mid = kernel_size // 2
kernel[mid, mid] = 1 - kernel_size**2
kernel_2d: torch.Tensor = kernel
return kernel_2d
def laplacian(x):
# https://torchgeometry.readthedocs.io/en/latest/_modules/kornia/filters/laplacian.html
b, c, h, w = x.shape
kernel_size = 3
kernel = get_laplacian_kernel2d(kernel_size).to(x.device).to(x.dtype)
kernel = kernel.repeat(c, 1, 1, 1)
padding = (kernel_size - 1) // 2
return F.conv2d(x, kernel, padding=padding, stride=1, groups=c)
# -------------------------------------- io
def copy_state_dict(cur_state_dict, pre_state_dict, prefix='', load_name=None):
def _get_params(key):
key = prefix + key
if key in pre_state_dict:
return pre_state_dict[key]
return None
for k in cur_state_dict.keys():
if load_name is not None:
if load_name not in k:
continue
v = _get_params(k)
try:
if v is None:
# print('parameter {} not found'.format(k))
continue
cur_state_dict[k].copy_(v)
except:
# print('copy param {} failed'.format(k))
continue
def dict2obj(d):
# if isinstance(d, list):
# d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
# original saved file with DataParallel
def remove_module(state_dict):
# create new OrderedDict that does not contain `module.`
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
return new_state_dict
def tensor2image(tensor):
image = tensor.detach().cpu().numpy()
image = image * 255.
image = np.maximum(np.minimum(image, 255), 0)
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]]
return image.astype(np.uint8).copy()
def dict_tensor2npy(tensor_dict):
npy_dict = {}
for key in tensor_dict:
npy_dict[key] = tensor_dict[key][0].cpu().numpy()
return npy_dict
def load_config(cfg_file):
import yaml
with open(cfg_file, 'r') as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
return cfg
def move_dict_to_device(dict, device, tensor2float=False):
for k, v in dict.items():
if isinstance(v, torch.Tensor):
if tensor2float:
dict[k] = v.float().to(device)
else:
dict[k] = v.to(device)
def write_obj(
obj_name,
vertices,
faces,
colors=None,
texture=None,
uvcoords=None,
uvfaces=None,
inverse_face_order=False,
normal_map=None,
):
''' Save 3D face model with texture.
borrowed from https://github.com/YadiraF/PRNet/blob/master/utils/write.py
Args:
obj_name: str
vertices: shape = (nver, 3)
colors: shape = (nver, 3)
faces: shape = (ntri, 3)
texture: shape = (uv_size, uv_size, 3)
uvcoords: shape = (nver, 2) max value<=1
'''
if obj_name.split('.')[-1] != 'obj':
obj_name = obj_name + '.obj'
mtl_name = obj_name.replace('.obj', '.mtl')
texture_name = obj_name.replace('.obj', '.png')
material_name = 'FaceTexture'
faces = faces.copy()
# mesh lab start with 1, python/c++ start from 0
faces += 1
if inverse_face_order:
faces = faces[:, [2, 1, 0]]
if uvfaces is not None:
uvfaces = uvfaces[:, [2, 1, 0]]
# write obj
with open(obj_name, 'w') as f:
if texture is not None:
f.write('mtllib %s\n\n' % os.path.basename(mtl_name))
# write vertices
if colors is None:
for i in range(vertices.shape[0]):
f.write('v {} {} {}\n'.format(vertices[i, 0], vertices[i, 1],
vertices[i, 2]))
else:
for i in range(vertices.shape[0]):
f.write('v {} {} {} {} {} {}\n'.format(vertices[i, 0],
vertices[i, 1],
vertices[i,
2], colors[i,
0],
colors[i,
1], colors[i,
2]))
# write uv coords
if texture is None:
for i in range(faces.shape[0]):
f.write('f {} {} {}\n'.format(faces[i, 0], faces[i, 1],
faces[i, 2]))
else:
for i in range(uvcoords.shape[0]):
f.write('vt {} {}\n'.format(uvcoords[i, 0], uvcoords[i, 1]))
f.write('usemtl %s\n' % material_name)
# write f: ver ind/ uv ind
uvfaces = uvfaces + 1
for i in range(faces.shape[0]):
f.write('f {}/{} {}/{} {}/{}\n'.format(faces[i, 0], uvfaces[i,
0],
faces[i, 1], uvfaces[i,
1],
faces[i,
2], uvfaces[i,
2]))
# write mtl
with open(mtl_name, 'w') as f:
f.write('newmtl %s\n' % material_name)
s = 'map_Kd {}\n'.format(
os.path.basename(texture_name)) # map to image
f.write(s)
if normal_map is not None:
if torch.is_tensor(normal_map):
normal_map = normal_map.detach().cpu().numpy().squeeze(
)
normal_map = np.transpose(normal_map, (1, 2, 0))
name, _ = os.path.splitext(obj_name)
normal_name = f'{name}_normals.png'
f.write(f'disp {normal_name}')
out_normal_map = normal_map / (np.linalg.norm(
normal_map, axis=-1, keepdims=True) + 1e-9)
out_normal_map = (out_normal_map + 1) * 0.5
cv2.imwrite(normal_name, (out_normal_map * 255).astype(
np.uint8)[:, :, ::-1])
cv2.imwrite(texture_name, texture)
def save_pkl(savepath, params, ind=0):
out_data = {}
for k, v in params.items():
if torch.is_tensor(v):
out_data[k] = v[ind].detach().cpu().numpy()
else:
out_data[k] = v
# import ipdb; ipdb.set_trace()
with open(savepath, 'wb') as f:
pickle.dump(out_data, f, protocol=2)
# load obj, similar to load_obj from pytorch3d
def load_obj(obj_filename):
""" Ref: https://github.com/facebookresearch/pytorch3d/blob/25c065e9dafa90163e7cec873dbb324a637c68b7/pytorch3d/io/obj_io.py
Load a mesh from a file-like object.
"""
with open(obj_filename, 'r') as f:
lines = [line.strip() for line in f]
verts, uvcoords = [], []
faces, uv_faces = [], []
# startswith expects each line to be a string. If the file is read in as
# bytes then first decode to strings.
if lines and isinstance(lines[0], bytes):
lines = [el.decode("utf-8") for el in lines]
for line in lines:
tokens = line.strip().split()
if line.startswith("v "): # Line is a vertex.
vert = [float(x) for x in tokens[1:4]]
if len(vert) != 3:
msg = "Vertex %s does not have 3 values. Line: %s"
raise ValueError(msg % (str(vert), str(line)))
verts.append(vert)
elif line.startswith("vt "): # Line is a texture.
tx = [float(x) for x in tokens[1:3]]
if len(tx) != 2:
raise ValueError(
"Texture %s does not have 2 values. Line: %s" %
(str(tx), str(line)))
uvcoords.append(tx)
elif line.startswith("f "): # Line is a face.
# Update face properties info.
face = tokens[1:]
face_list = [f.split("/") for f in face]
for vert_props in face_list:
# Vertex index.
faces.append(int(vert_props[0]))
if len(vert_props) > 1:
if vert_props[1] != "":
# Texture index is present e.g. f 4/1/1.
uv_faces.append(int(vert_props[1]))
verts = torch.tensor(verts, dtype=torch.float32)
uvcoords = torch.tensor(uvcoords, dtype=torch.float32)
faces = torch.tensor(faces, dtype=torch.long)
faces = faces.reshape(-1, 3) - 1
uv_faces = torch.tensor(uv_faces, dtype=torch.long)
uv_faces = uv_faces.reshape(-1, 3) - 1
return (verts, uvcoords, faces, uv_faces)
# ---------------------------------- visualization
def draw_rectangle(img,
bbox,
bbox_color=(255, 255, 255),
thickness=3,
is_opaque=False,
alpha=0.5):
"""Draws the rectangle around the object
borrowed from: https://bbox-visualizer.readthedocs.io/en/latest/_modules/bbox_visualizer/bbox_visualizer.html
Parameters
----------
img : ndarray
the actual image
bbox : list
a list containing x_min, y_min, x_max and y_max of the rectangle positions
bbox_color : tuple, optional
the color of the box, by default (255,255,255)
thickness : int, optional
thickness of the outline of the box, by default 3
is_opaque : bool, optional
if False, draws a solid rectangular outline. Else, a filled rectangle which is semi transparent, by default False
alpha : float, optional
strength of the opacity, by default 0.5
Returns
-------
ndarray
the image with the bounding box drawn
"""
output = img.copy()
if not is_opaque:
cv2.rectangle(output, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
bbox_color, thickness)
else:
overlay = img.copy()
cv2.rectangle(overlay, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
bbox_color, -1)
# cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
return output
def plot_bbox(image, bbox):
''' Draw bbox
Args:
image: the input image
bbox: [left, top, right, bottom]
'''
image = cv2.rectangle(image.copy(), (bbox[1], bbox[0]), (bbox[3], bbox[2]),
[0, 255, 0],
thickness=3)
# image = draw_rectangle(image, bbox, bbox_color=[0,255,0])
return image
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1
def plot_kpts(image, kpts, color='r'):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
kpts = kpts.copy().astype(np.int32)
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
for i in range(kpts.shape[0]):
st = kpts[i, :2]
if kpts.shape[1] == 4:
if kpts[i, 3] > 0.5:
c = (0, 255, 0)
else:
c = (0, 0, 255)
image = cv2.circle(image, (st[0], st[1]), 1, c, 2)
if i in end_list:
continue
ed = kpts[i + 1, :2]
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]),
(255, 255, 255), 1)
return image
def plot_verts(image, kpts, color='r'):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
kpts = kpts.copy().astype(np.int32)
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (0, 0, 255)
elif color == 'y':
c = (0, 255, 255)
image = image.copy()
for i in range(kpts.shape[0]):
st = kpts[i, :2]
image = cv2.circle(image, (st[0], st[1]), 1, c, 5)
return image
def tensor_vis_landmarks(images,
landmarks,
gt_landmarks=None,
color='g',
isScale=True):
# visualize landmarks
vis_landmarks = []
images = images.cpu().numpy()
predicted_landmarks = landmarks.detach().cpu().numpy()
if gt_landmarks is not None:
gt_landmarks_np = gt_landmarks.detach().cpu().numpy()
for i in range(images.shape[0]):
image = images[i]
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy()
image = (image * 255)
if isScale:
predicted_landmark = predicted_landmarks[i] * \
image.shape[0]/2 + image.shape[0]/2
else:
predicted_landmark = predicted_landmarks[i]
if predicted_landmark.shape[0] == 68:
image_landmarks = plot_kpts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(
image_landmarks, gt_landmarks_np[i] * image.shape[0] / 2 +
image.shape[0] / 2, 'r')
else:
image_landmarks = plot_verts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(
image_landmarks, gt_landmarks_np[i] * image.shape[0] / 2 +
image.shape[0] / 2, 'r')
vis_landmarks.append(image_landmarks)
vis_landmarks = np.stack(vis_landmarks)
vis_landmarks = torch.from_numpy(
vis_landmarks[:, :, :, [2, 1, 0]].transpose(
0, 3, 1, 2)) / 255. # , dtype=torch.float32)
return vis_landmarks
|