File size: 13,299 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
import io
import numpy as np
from pathlib import Path
import re
import trimesh
import imageio
import os
from scipy.spatial.transform import Rotation as R
def to_numpy(*args):
    def convert(a):
        if isinstance(a,torch.Tensor):
            return a.detach().cpu().numpy()
        assert a is None or isinstance(a,np.ndarray)
        return a
    
    return convert(args[0]) if len(args)==1 else tuple(convert(a) for a in args)

def save_obj(
        vertices,
        faces,
        filename:Path,
        colors=None,
        ):
    filename = Path(filename)

    bytes_io = io.BytesIO()
    if colors is not None:
        vertices = torch.cat((vertices, colors),dim=-1)
        np.savetxt(bytes_io, vertices.detach().cpu().numpy(), 'v %.4f %.4f %.4f %.4f %.4f %.4f')
    else:
        np.savetxt(bytes_io, vertices.detach().cpu().numpy(), 'v %.4f %.4f %.4f')
    np.savetxt(bytes_io, faces.cpu().numpy() + 1, 'f %d %d %d') #1-based indexing

    obj_path = filename.with_suffix('.obj')
    with open(obj_path, 'w') as file:
        file.write(bytes_io.getvalue().decode('UTF-8'))
        
def save_glb(
        filename,
        v_pos,
        t_pos_idx,
        v_nrm=None,
        v_tex=None,
        t_tex_idx=None,
        v_rgb=None,
    ) -> str:
        
        mesh = trimesh.Trimesh(
            vertices=v_pos, faces=t_pos_idx, vertex_normals=v_nrm, vertex_colors=v_rgb
        )
        # not tested
        if v_tex is not None:
            mesh.visual = trimesh.visual.TextureVisuals(uv=v_tex)
        mesh.export(filename)
  

def load_obj(
        filename:Path, 
        device='cuda',
        load_color=False
        ) -> tuple[torch.Tensor,torch.Tensor]:
    filename = Path(filename)
    obj_path = filename.with_suffix('.obj')
    with open(obj_path) as file:
        obj_text = file.read()
    num = r"([0-9\.\-eE]+)"
    if load_color:
        v = re.findall(f"(v {num} {num} {num} {num} {num} {num})",obj_text)
    else:
        v = re.findall(f"(v {num} {num} {num})",obj_text)
    vertices = np.array(v)[:,1:].astype(np.float32)
    all_faces = []
    f = re.findall(f"(f {num} {num} {num})",obj_text)
    if f:
        all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,1)[...,:1])
    f = re.findall(f"(f {num}/{num} {num}/{num} {num}/{num})",obj_text)
    if f:
        all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,2)[...,:2])
    f = re.findall(f"(f {num}/{num}/{num} {num}/{num}/{num} {num}/{num}/{num})",obj_text)
    if f:
        all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,3)[...,:2])
    f = re.findall(f"(f {num}//{num} {num}//{num} {num}//{num})",obj_text)
    if f:
        all_faces.append(np.array(f)[:,1:].astype(np.int32).reshape(-1,3,2)[...,:1])
    all_faces = np.concatenate(all_faces,axis=0)
    all_faces -= 1 #1-based indexing
    faces = all_faces[:,:,0]

    vertices = torch.tensor(vertices,dtype=torch.float32,device=device)
    faces = torch.tensor(faces,dtype=torch.long,device=device)

    return vertices,faces

def save_ply(
        filename:Path,
        vertices:torch.Tensor, #V,3
        faces:torch.Tensor, #F,3
        vertex_colors:torch.Tensor=None, #V,3
        vertex_normals:torch.Tensor=None, #V,3
        ):
        
    filename = Path(filename).with_suffix('.ply')
    vertices,faces,vertex_colors = to_numpy(vertices,faces,vertex_colors)
    assert np.all(np.isfinite(vertices)) and faces.min()==0 and faces.max()==vertices.shape[0]-1

    header = 'ply\nformat ascii 1.0\n'

    header += 'element vertex ' + str(vertices.shape[0]) + '\n'
    header += 'property double x\n'
    header += 'property double y\n'
    header += 'property double z\n'

    if vertex_normals is not None:
        header += 'property double nx\n'
        header += 'property double ny\n'
        header += 'property double nz\n'

    if vertex_colors is not None:
        assert vertex_colors.shape[0] == vertices.shape[0]
        color = (vertex_colors*255).astype(np.uint8)
        header += 'property uchar red\n'
        header += 'property uchar green\n'
        header += 'property uchar blue\n'

    header += 'element face ' + str(faces.shape[0]) + '\n'
    header += 'property list int int vertex_indices\n'
    header += 'end_header\n'

    with open(filename, 'w') as file:
        file.write(header)

        for i in range(vertices.shape[0]):
            s = f"{vertices[i,0]} {vertices[i,1]} {vertices[i,2]}"    
            if vertex_normals is not None:
                s += f" {vertex_normals[i,0]} {vertex_normals[i,1]} {vertex_normals[i,2]}"
            if vertex_colors is not None:
                s += f" {color[i,0]:03d} {color[i,1]:03d} {color[i,2]:03d}"
            file.write(s+'\n')
        
        for i in range(faces.shape[0]):
            file.write(f"3 {faces[i,0]} {faces[i,1]} {faces[i,2]}\n")
    full_verts = vertices[faces] #F,3,3
    
def save_images(
        images:torch.Tensor, #B,H,W,CH
        dir:Path,
        ):
    dir = Path(dir)
    dir.mkdir(parents=True,exist_ok=True)
    if images.shape[-1]==1:
        images = images.repeat(1,1,1,3)
    for i in range(images.shape[0]):
        imageio.imwrite(dir/f'{i:02d}.png',(images.detach()[i,:,:,:3]*255).clamp(max=255).type(torch.uint8).cpu().numpy())
def normalize_scene(vertices):
    bbox_min, bbox_max = vertices.min(axis=0)[0], vertices.max(axis=0)[0]
    offset = -(bbox_min + bbox_max) / 2
    vertices = vertices + offset
    
    # print(offset)
    dxyz = bbox_max - bbox_min
    dist = torch.sqrt(dxyz[0]**2+ dxyz[1]**2+dxyz[2]**2)
    scale = 1. / dist
    # print(scale)
    vertices *= scale
    return vertices
def normalize_vertices(
        vertices:torch.Tensor, #V,3
    ):
    """shift and resize mesh to fit into a unit sphere"""
    vertices -= (vertices.min(dim=0)[0] + vertices.max(dim=0)[0]) / 2
    vertices /= torch.norm(vertices, dim=-1).max()
    return vertices

def laplacian(
        num_verts:int,
        edges: torch.Tensor #E,2
        ) -> torch.Tensor: #sparse V,V
    """create sparse Laplacian matrix"""
    V = num_verts
    E = edges.shape[0]

    #adjacency matrix,
    idx = torch.cat([edges, edges.fliplr()], dim=0).type(torch.long).T  # (2, 2*E)
    ones = torch.ones(2*E, dtype=torch.float32, device=edges.device)
    A = torch.sparse.FloatTensor(idx, ones, (V, V))

    #degree matrix
    deg = torch.sparse.sum(A, dim=1).to_dense()
    idx = torch.arange(V, device=edges.device)
    idx = torch.stack([idx, idx], dim=0)
    D = torch.sparse.FloatTensor(idx, deg, (V, V))

    return D - A

def _translation(x, y, z, device):
    return torch.tensor([[1., 0, 0, x],
                    [0, 1, 0, y],
                    [0, 0, 1, z],
                    [0, 0, 0, 1]],device=device) #4,4


def make_round_views(view_nums, scale=2., device='cuda'):
    w2c = []
    ortho_scale = scale/2
    projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
    for i in reversed(range(view_nums)):
        tmp = np.eye(4)
        rot = R.from_euler('xyz', [0,  360/view_nums*i-180, 0], degrees=True).as_matrix()
        rot[:, 2] *= -1
        tmp[:3, :3] = rot
        tmp[2, 3] = -1.8
        w2c.append(tmp) 
    w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
    projection = torch.from_numpy(projection).float().to(device=device)
    return w2c, projection

def make_star_views(az_degs, pol_degs, scale=2., device='cuda'):
    w2c = []
    ortho_scale = scale/2
    projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
    for pol in pol_degs:
        for az in az_degs:
            tmp = np.eye(4)
            rot = R.from_euler('xyz', [0, az-180, 0], degrees=True).as_matrix()
            rot[:, 2] *= -1
            rot_z = R.from_euler('xyz', [pol, 0, 0], degrees=True).as_matrix()
            rot = rot_z @ rot
            tmp[:3, :3] = rot
            tmp[2, 3] = -1.8
            w2c.append(tmp)
    w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
    projection = torch.from_numpy(projection).float().to(device=device)
    return w2c, projection

# def make_star_cameras(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'):
#     if r is None:
#         r = 1/distance
#     A = az_count
#     P = pol_count
#     C = A * P

#     phi = torch.arange(0,A) * (2*torch.pi/A)
#     phi_rot = torch.eye(3,device=device)[None,None].expand(A,1,3,3).clone()
#     phi_rot[:,0,2,2] = phi.cos()
#     phi_rot[:,0,2,0] = -phi.sin()
#     phi_rot[:,0,0,2] = phi.sin()
#     phi_rot[:,0,0,0] = phi.cos()
    
#     theta = torch.arange(1,P+1) * (torch.pi/(P+1)) - torch.pi/2
#     theta_rot = torch.eye(3,device=device)[None,None].expand(1,P,3,3).clone()
#     theta_rot[0,:,1,1] = theta.cos()
#     theta_rot[0,:,1,2] = -theta.sin()
#     theta_rot[0,:,2,1] = theta.sin()
#     theta_rot[0,:,2,2] = theta.cos()

#     mv = torch.empty((C,4,4), device=device)
#     mv[:] = torch.eye(4, device=device)
#     mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(C,3,3)
#     mv = _translation(0, 0, -distance, device) @ mv
#     print(mv[:, :3, 3])
#     return mv, _projection(r, device)

def get_ortho_projection_matrix(left, right, bottom, top, near, far):
    projection_matrix = np.zeros((4, 4), dtype=np.float32)

    projection_matrix[0, 0] = 2.0 / (right - left)
    projection_matrix[1, 1] = -2.0 / (top - bottom) # add a negative sign here as the y axis is flipped in nvdiffrast output
    projection_matrix[2, 2] = -2.0 / (far - near)

    projection_matrix[0, 3] = -(right + left) / (right - left)
    projection_matrix[1, 3] = -(top + bottom) / (top - bottom)
    projection_matrix[2, 3] = -(far + near) / (far - near)
    projection_matrix[3, 3] = 1.0

    return projection_matrix

def _projection(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True):
    if l is None:
        l = -r
    if t is None:
        t = r
    if b is None:
        b = -t
    p = torch.zeros([4,4],device=device)
    p[0,0] = 2*n/(r-l)
    p[0,2] = (r+l)/(r-l)
    p[1,1] = 2*n/(t-b) * (-1 if flip_y else 1)
    p[1,2] = (t+b)/(t-b)
    p[2,2] = -(f+n)/(f-n)
    p[2,3] = -(2*f*n)/(f-n)
    p[3,2] = -1
    return p #4,4
def get_perspective_projection_matrix(fov, aspect=1.0, near=0.1, far=100.0):
    tan_half_fovy = torch.tan(torch.deg2rad(fov/2))
    projection_matrix = torch.zeros(4, 4)
    projection_matrix[0, 0] = 1 / (aspect * tan_half_fovy)
    projection_matrix[1, 1] = -1 / tan_half_fovy
    projection_matrix[2, 2] = -(far + near) / (far - near)
    projection_matrix[2, 3] = -2 * far * near / (far - near)
    projection_matrix[3, 2] = -1

def make_sparse_camera(cam_path, scale=4., views=None, device='cuda', mode='ortho'):

    if mode == 'ortho':
        ortho_scale = scale/2
        projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 0.1, 100)
    else:
        npy_data = np.load(os.path.join(cam_path, f'{i:03d}.npy'), allow_pickle=True).item()
        fov = npy_data['fov']
        projection = get_perspective_projection_matrix(fov, aspect=1.0, near=0.1, far=100.0)
        # projection = _projection(r=1/1.5, device=device,  n=0.1, f=100)
    # for view in ['front', 'right', 'back', 'left']:
    #     tmp = np.loadtxt(os.path.join(cam_path, f'{view}_RT.txt')) 
    #     rot = tmp[:, [0, 2, 1]]
    #     rot[:, 2] *= -1
    #     tmp[:3, :3] = rot
    #     tmp = np.concatenate([tmp, np.array([[0, 0, 0, 1]])], axis=0)
    #     c2w = np.linalg.inv(tmp)
    #     w2c.append(np.concatenate([tmp, np.array([[0, 0, 0, 1]])], axis=0))

    '''
    world :
            z
            |
            |____y
            /
           /
          x  
    camera:(opencv)
               z
              /
             /____x
             |
             |
             y
    '''
    if views is None:
        views = [0, 1, 2, 4, 6, 7]
    w2c = []
    for i in views:
        npy_data = np.load(os.path.join(cam_path, f'{i:03d}.npy'), allow_pickle=True).item()
        w2c_cv = npy_data['extrinsic']
        w2c_cv = np.concatenate([w2c_cv, np.array([[0, 0, 0, 1]])], axis=0)
        c2w_cv = np.linalg.inv(w2c_cv)

        c2w_gl = c2w_cv[[1, 2, 0, 3], :] # invert world coordinate, y->x, z->y, x->z 
        c2w_gl[:3, 1:3] *= -1 # opencv->opengl, flip y and z
        w2c_gl = np.linalg.inv(c2w_gl)
        w2c.append(w2c_gl)

    # special pose for test
    # w2c = np.eye(4)
    # rot = R.from_euler('xyz', [0, 0, 0], degrees=True).as_matrix()
    # w2c[:3, :3] = rot
    # w2c[2, 3] = -1.5
    w2c = torch.from_numpy(np.stack(w2c, 0)).float().to(device=device)
    projection = torch.from_numpy(projection).float().to(device=device)
    return w2c, projection
    
def make_sphere(level:int=2,radius=1.,device='cuda') -> tuple[torch.Tensor,torch.Tensor]:
    sphere = trimesh.creation.icosphere(subdivisions=level, radius=radius, color=np.array([0.5, 0.5, 0.5]))
    vertices = torch.tensor(sphere.vertices, device=device, dtype=torch.float32) * radius
    
    # print(vertices.shape)
    # exit()
    faces = torch.tensor(sphere.faces, device=device, dtype=torch.long)
    colors = torch.tensor(sphere.visual.vertex_colors[..., :3], device=device, dtype=torch.float32)
    return vertices, faces, colors