Spaces:
Running
on
L40S
Running
on
L40S
File size: 25,732 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
"""
Author: Yao Feng
Copyright (c) 2020, Yao Feng
All rights reserved.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from skimage.io import imread
import imageio
from . import util
def set_rasterizer(type='pytorch3d'):
if type == 'pytorch3d':
global Meshes, load_obj, rasterize_meshes
from pytorch3d.structures import Meshes
from pytorch3d.io import load_obj
from pytorch3d.renderer.mesh import rasterize_meshes
elif type == 'standard':
global standard_rasterize, load_obj
import os
from .util import load_obj
# Use JIT Compiling Extensions
# ref: https://pytorch.org/tutorials/advanced/cpp_extension.html
from torch.utils.cpp_extension import load, CUDA_HOME
curr_dir = os.path.dirname(__file__)
standard_rasterize_cuda = \
load(name='standard_rasterize_cuda',
sources=[f'{curr_dir}/rasterizer/standard_rasterize_cuda.cpp',
f'{curr_dir}/rasterizer/standard_rasterize_cuda_kernel.cu'],
extra_cuda_cflags=['-std=c++14', '-ccbin=$$(which gcc-7)']) # cuda10.2 is not compatible with gcc9. Specify gcc 7
from standard_rasterize_cuda import standard_rasterize
# If JIT does not work, try manually installation first
# 1. see instruction here: pixielib/utils/rasterizer/INSTALL.md
# 2. add this: "from .rasterizer.standard_rasterize_cuda import standard_rasterize" here
class StandardRasterizer(nn.Module):
""" Alg: https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
Notice:
x,y,z are in image space, normalized to [-1, 1]
can render non-squared image
not differentiable
"""
def __init__(self, height, width=None):
"""
use fixed raster_settings for rendering faces
"""
super().__init__()
if width is None:
width = height
self.h = h = height
self.w = w = width
def forward(self, vertices, faces, attributes=None, h=None, w=None):
device = vertices.device
if h is None:
h = self.h
if w is None:
w = self.h
bz = vertices.shape[0]
depth_buffer = torch.zeros([bz, h, w]).float().to(device) + 1e6
triangle_buffer = torch.zeros([bz, h, w]).int().to(device) - 1
baryw_buffer = torch.zeros([bz, h, w, 3]).float().to(device)
vert_vis = torch.zeros([bz, vertices.shape[1]]).float().to(device)
vertices = vertices.clone().float()
vertices[..., 0] = vertices[..., 0] * w / 2 + w / 2
vertices[..., 1] = vertices[..., 1] * h / 2 + h / 2
vertices[..., 2] = vertices[..., 2] * w / 2
f_vs = util.face_vertices(vertices, faces)
standard_rasterize(f_vs, depth_buffer, triangle_buffer, baryw_buffer,
h, w)
pix_to_face = triangle_buffer[:, :, :, None].long()
bary_coords = baryw_buffer[:, :, :, None, :]
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1],
3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat(
[pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
return pixel_vals
class Pytorch3dRasterizer(nn.Module):
""" Borrowed from https://github.com/facebookresearch/pytorch3d
This class implements methods for rasterizing a batch of heterogenous Meshes.
Notice:
x,y,z are in image space, normalized
can only render squared image now
"""
def __init__(self, image_size=224):
"""
use fixed raster_settings for rendering faces
"""
super().__init__()
raster_settings = {
'image_size': image_size,
'blur_radius': 0.0,
'faces_per_pixel': 1,
'bin_size': None,
'max_faces_per_bin': None,
'perspective_correct': False,
}
raster_settings = util.dict2obj(raster_settings)
self.raster_settings = raster_settings
def forward(self, vertices, faces, attributes=None, h=None, w=None):
fixed_vertices = vertices.clone()
fixed_vertices[..., :2] = -fixed_vertices[..., :2]
meshes_screen = Meshes(verts=fixed_vertices.float(),
faces=faces.long())
raster_settings = self.raster_settings
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=raster_settings.image_size,
blur_radius=raster_settings.blur_radius,
faces_per_pixel=raster_settings.faces_per_pixel,
bin_size=raster_settings.bin_size,
max_faces_per_bin=raster_settings.max_faces_per_bin,
perspective_correct=raster_settings.perspective_correct,
)
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1],
3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat(
[pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
return pixel_vals
class SRenderY(nn.Module):
def __init__(self,
image_size,
obj_filename,
uv_size=256,
rasterizer_type='standard'):
super(SRenderY, self).__init__()
self.image_size = image_size
self.uv_size = uv_size
if rasterizer_type == 'pytorch3d':
self.rasterizer = Pytorch3dRasterizer(image_size)
self.uv_rasterizer = Pytorch3dRasterizer(uv_size)
verts, faces, aux = load_obj(obj_filename)
uvcoords = aux.verts_uvs[None, ...] # (N, V, 2)
uvfaces = faces.textures_idx[None, ...] # (N, F, 3)
faces = faces.verts_idx[None, ...]
elif rasterizer_type == 'standard':
self.rasterizer = StandardRasterizer(image_size)
self.uv_rasterizer = StandardRasterizer(uv_size)
verts, uvcoords, faces, uvfaces = load_obj(obj_filename)
verts = verts[None, ...]
uvcoords = uvcoords[None, ...]
faces = faces[None, ...]
uvfaces = uvfaces[None, ...]
else:
NotImplementedError
# faces
dense_triangles = util.generate_triangles(uv_size, uv_size)
self.register_buffer(
'dense_faces',
torch.from_numpy(dense_triangles).long()[None, :, :])
self.register_buffer('faces', faces)
self.register_buffer('raw_uvcoords', uvcoords)
# uv coords
uvcoords = torch.cat([uvcoords, uvcoords[:, :, 0:1] * 0. + 1.],
-1) # [bz, ntv, 3]
uvcoords = uvcoords * 2 - 1
uvcoords[..., 1] = -uvcoords[..., 1]
face_uvcoords = util.face_vertices(uvcoords, uvfaces)
self.register_buffer('uvcoords', uvcoords)
self.register_buffer('uvfaces', uvfaces)
self.register_buffer('face_uvcoords', face_uvcoords)
# shape colors, for rendering shape overlay
colors = torch.tensor([180, 180, 180])[None, None, :].repeat(
1,
faces.max() + 1, 1).float() / 255.
face_colors = util.face_vertices(colors, faces)
self.register_buffer('vertex_colors', colors)
self.register_buffer('face_colors', face_colors)
# SH factors for lighting
pi = np.pi
constant_factor = torch.tensor([
1 / np.sqrt(4 * pi), ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), ((2 * pi) / 3) *
(np.sqrt(3 / (4 * pi))), (pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi)))
]).float()
self.register_buffer('constant_factor', constant_factor)
def forward(self,
vertices,
transformed_vertices,
albedos,
lights=None,
light_type='point',
background=None,
h=None,
w=None):
'''
-- Texture Rendering
vertices: [batch_size, V, 3], vertices in world space, for calculating normals, then shading
transformed_vertices: [batch_size, V, 3], rnage:[-1,1], projected vertices, in image space, for rasterization
albedos: [batch_size, 3, h, w], uv map
lights:
spherical homarnic: [N, 9(shcoeff), 3(rgb)]
points/directional lighting: [N, n_lights, 6(xyzrgb)]
light_type:
point or directional
'''
batch_size = vertices.shape[0]
# normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100)
transformed_vertices = transformed_vertices.clone()
transformed_vertices[:, :,
2] = transformed_vertices[:, :,
2] - transformed_vertices[:, :,
2].min(
)
transformed_vertices[:, :,
2] = transformed_vertices[:, :,
2] / transformed_vertices[:, :,
2].max(
)
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10
# attributes
face_vertices = util.face_vertices(
vertices, self.faces.expand(batch_size, -1, -1))
normals = util.vertex_normals(vertices,
self.faces.expand(batch_size, -1, -1))
face_normals = util.face_vertices(
normals, self.faces.expand(batch_size, -1, -1))
transformed_normals = util.vertex_normals(
transformed_vertices, self.faces.expand(batch_size, -1, -1))
transformed_face_normals = util.face_vertices(
transformed_normals, self.faces.expand(batch_size, -1, -1))
attributes = torch.cat([
self.face_uvcoords.expand(batch_size, -1, -1, -1),
transformed_face_normals.detach(),
face_vertices.detach(), face_normals
], -1)
# rasterize
rendering = self.rasterizer(transformed_vertices,
self.faces.expand(batch_size, -1, -1),
attributes, h, w)
####
# vis mask
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()
# albedo
uvcoords_images = rendering[:, :3, :, :]
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2]
albedo_images = F.grid_sample(albedos, grid, align_corners=False)
# visible mask for pixels with positive normal direction
transformed_normal_map = rendering[:, 3:6, :, :].detach()
pos_mask = (transformed_normal_map[:, 2:, :, :] < -0.05).float()
# shading
normal_images = rendering[:, 9:12, :, :]
if lights is not None:
if lights.shape[1] == 9:
shading_images = self.add_SHlight(normal_images, lights)
else:
if light_type == 'point':
vertice_images = rendering[:, 6:9, :, :].detach()
shading = self.add_pointlight(
vertice_images.permute(0, 2, 3,
1).reshape([batch_size, -1, 3]),
normal_images.permute(0, 2, 3,
1).reshape([batch_size, -1, 3]),
lights)
shading_images = shading.reshape([
batch_size, albedo_images.shape[2],
albedo_images.shape[3], 3
]).permute(0, 3, 1, 2)
else:
shading = self.add_directionlight(
normal_images.permute(0, 2, 3,
1).reshape([batch_size, -1, 3]),
lights)
shading_images = shading.reshape([
batch_size, albedo_images.shape[2],
albedo_images.shape[3], 3
]).permute(0, 3, 1, 2)
images = albedo_images * shading_images
else:
images = albedo_images
shading_images = images.detach() * 0.
if background is None:
images = images*alpha_images + \
torch.ones_like(images).to(vertices.device)*(1-alpha_images)
else:
# background = F.interpolate(background, [self.image_size, self.image_size])
images = images * alpha_images + background.contiguous() * (
1 - alpha_images)
outputs = {
'images': images,
'albedo_images': albedo_images,
'alpha_images': alpha_images,
'pos_mask': pos_mask,
'shading_images': shading_images,
'grid': grid,
'normals': normals,
'normal_images': normal_images,
'transformed_normals': transformed_normals,
}
return outputs
def add_SHlight(self, normal_images, sh_coeff):
'''
sh_coeff: [bz, 9, 3]
'''
N = normal_images
sh = torch.stack([
N[:, 0] * 0. + 1., N[:, 0], N[:, 1], N[:, 2], N[:, 0] * N[:, 1],
N[:, 0] * N[:, 2], N[:, 1] * N[:, 2], N[:, 0]**2 - N[:, 1]**2, 3 *
(N[:, 2]**2) - 1
], 1) # [bz, 9, h, w]
sh = sh * self.constant_factor[None, :, None, None]
# [bz, 9, 3, h, w]
shading = torch.sum(
sh_coeff[:, :, :, None, None] * sh[:, :, None, :, :], 1)
return shading
def add_pointlight(self, vertices, normals, lights):
'''
vertices: [bz, nv, 3]
lights: [bz, nlight, 6]
returns:
shading: [bz, nv, 3]
'''
light_positions = lights[:, :, :3]
light_intensities = lights[:, :, 3:]
directions_to_lights = F.normalize(light_positions[:, :, None, :] -
vertices[:, None, :, :],
dim=3)
# normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.)
normals_dot_lights = (normals[:, None, :, :] *
directions_to_lights).sum(dim=3)
shading = normals_dot_lights[:, :, :,
None] * light_intensities[:, :, None, :]
return shading.mean(1)
def add_directionlight(self, normals, lights):
'''
normals: [bz, nv, 3]
lights: [bz, nlight, 6]
returns:
shading: [bz, nv, 3]
'''
light_direction = lights[:, :, :3]
light_intensities = lights[:, :, 3:]
directions_to_lights = F.normalize(
light_direction[:, :, None, :].expand(-1, -1, normals.shape[1],
-1),
dim=3)
# normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.)
# normals_dot_lights = (normals[:,None,:,:]*directions_to_lights).sum(dim=3)
normals_dot_lights = torch.clamp(
(normals[:, None, :, :] * directions_to_lights).sum(dim=3), 0., 1.)
shading = normals_dot_lights[:, :, :,
None] * light_intensities[:, :, None, :]
return shading.mean(1)
def render_shape(self,
vertices,
transformed_vertices,
colors=None,
background=None,
detail_normal_images=None,
lights=None,
return_grid=False,
uv_detail_normals=None,
h=None,
w=None):
'''
-- rendering shape with detail normal map
'''
batch_size = vertices.shape[0]
if lights is None:
light_positions = torch.tensor([
[-5, 5, -5],
[5, 5, -5],
[-5, -5, -5],
[5, -5, -5],
[0, 0, -5],
])[None, :, :].expand(batch_size, -1, -1).float()
light_intensities = torch.ones_like(light_positions).float() * 1.7
lights = torch.cat((light_positions, light_intensities),
2).to(vertices.device)
# normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100)
transformed_vertices = transformed_vertices.clone()
transformed_vertices[:, :,
2] = transformed_vertices[:, :,
2] - transformed_vertices[:, :,
2].min(
)
transformed_vertices[:, :,
2] = transformed_vertices[:, :,
2] / transformed_vertices[:, :,
2].max(
)
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10
# Attributes
face_vertices = util.face_vertices(
vertices, self.faces.expand(batch_size, -1, -1))
normals = util.vertex_normals(vertices,
self.faces.expand(batch_size, -1, -1))
face_normals = util.face_vertices(
normals, self.faces.expand(batch_size, -1, -1))
transformed_normals = util.vertex_normals(
transformed_vertices, self.faces.expand(batch_size, -1, -1))
transformed_face_normals = util.face_vertices(
transformed_normals, self.faces.expand(batch_size, -1, -1))
if colors is None:
colors = self.face_colors.expand(batch_size, -1, -1, -1)
attributes = torch.cat([
colors,
transformed_face_normals.detach(),
face_vertices.detach(), face_normals,
self.face_uvcoords.expand(batch_size, -1, -1, -1)
], -1)
# rasterize
rendering = self.rasterizer(transformed_vertices,
self.faces.expand(batch_size, -1, -1),
attributes, h, w)
####
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()
# albedo
albedo_images = rendering[:, :3, :, :]
# mask
transformed_normal_map = rendering[:, 3:6, :, :].detach()
pos_mask = (transformed_normal_map[:, 2:, :, :] < 0).float()
# shading
normal_images = rendering[:, 9:12, :, :].detach()
vertice_images = rendering[:, 6:9, :, :].detach()
if detail_normal_images is not None:
normal_images = detail_normal_images
if uv_detail_normals is not None:
uvcoords_images = rendering[:, 12:15, :, :]
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2]
detail_normal_images = F.grid_sample(uv_detail_normals,
grid,
align_corners=False)
normal_images = detail_normal_images
shading = self.add_directionlight(
normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]),
lights)
shading_images = shading.reshape(
[batch_size, albedo_images.shape[2], albedo_images.shape[3],
3]).permute(0, 3, 1, 2).contiguous()
shaded_images = albedo_images * shading_images
if background is None:
shape_images = shaded_images*alpha_images + \
torch.ones_like(shaded_images).to(
vertices.device)*(1-alpha_images)
else:
# background = F.interpolate(background, [self.image_size, self.image_size])
shape_images = shaded_images*alpha_images + \
background.contiguous()*(1-alpha_images)
if return_grid:
uvcoords_images = rendering[:, 12:15, :, :]
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2]
return shape_images, normal_images, grid
else:
return shape_images
def render_depth(self, transformed_vertices):
'''
-- rendering depth
'''
transformed_vertices = transformed_vertices.clone()
batch_size = transformed_vertices.shape[0]
transformed_vertices[:, :,
2] = transformed_vertices[:, :,
2] - transformed_vertices[:, :,
2].min(
)
z = -transformed_vertices[:, :, 2:].repeat(1, 1, 3)
z = z - z.min()
z = z / z.max()
# Attributes
attributes = util.face_vertices(z,
self.faces.expand(batch_size, -1, -1))
# rasterize
rendering = self.rasterizer(transformed_vertices,
self.faces.expand(batch_size, -1, -1),
attributes)
####
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach()
depth_images = rendering[:, :1, :, :]
return depth_images
def render_colors(self, transformed_vertices, colors, h=None, w=None):
'''
-- rendering colors: could be rgb color/ normals, etc
colors: [bz, num of vertices, 3]
'''
transformed_vertices = transformed_vertices.clone()
batch_size = colors.shape[0]
# normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100)
transformed_vertices[:, :,
2] = transformed_vertices[:, :,
2] - transformed_vertices[:, :,
2].min(
)
transformed_vertices[:, :,
2] = transformed_vertices[:, :,
2] / transformed_vertices[:, :,
2].max(
)
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10
# Attributes
attributes = util.face_vertices(colors,
self.faces.expand(batch_size, -1, -1))
# rasterize
rendering = self.rasterizer(transformed_vertices,
self.faces.expand(batch_size, -1, -1),
attributes,
h=h,
w=w)
####
alpha_images = rendering[:, [-1], :, :].detach()
images = rendering[:, :3, :, :] * alpha_images
return images
def world2uv(self, vertices):
'''
project vertices from world space to uv space
vertices: [bz, V, 3]
uv_vertices: [bz, 3, h, w]
'''
batch_size = vertices.shape[0]
face_vertices = util.face_vertices(
vertices, self.faces.expand(batch_size, -1, -1))
uv_vertices = self.uv_rasterizer(
self.uvcoords.expand(batch_size, -1, -1),
self.uvfaces.expand(batch_size, -1, -1), face_vertices)[:, :3]
return uv_vertices
|