File size: 18,094 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import torch
import torch.nn.functional as F
import numpy as np
''' Rotation Converter
    This function is borrowed from https://github.com/kornia/kornia

ref: https://kornia.readthedocs.io/en/v0.1.2/_modules/torchgeometry/core/conversions.html#
Repre: euler angle(3), axis angle(3), rotation matrix(3x3), quaternion(4), continuous rotation representation (6)
batch_rodrigues: axis angle -> matrix 
'''
pi = torch.Tensor([3.14159265358979323846])


def rad2deg(tensor):
    """Function that converts angles from radians to degrees.

    See :class:`~torchgeometry.RadToDeg` for details.

    Args:
        tensor (Tensor): Tensor of arbitrary shape.

    Returns:
        Tensor: Tensor with same shape as input.

    Example:
        >>> input = tgm.pi * torch.rand(1, 3, 3)
        >>> output = tgm.rad2deg(input)
    """
    if not torch.is_tensor(tensor):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(tensor)))

    return 180. * tensor / pi.to(tensor.device).type(tensor.dtype)


def deg2rad(tensor):
    """Function that converts angles from degrees to radians.

    See :class:`~torchgeometry.DegToRad` for details.

    Args:
        tensor (Tensor): Tensor of arbitrary shape.

    Returns:
        Tensor: Tensor with same shape as input.

    Examples::

        >>> input = 360. * torch.rand(1, 3, 3)
        >>> output = tgm.deg2rad(input)
    """
    if not torch.is_tensor(tensor):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(tensor)))

    return tensor * pi.to(tensor.device).type(tensor.dtype) / 180.


# to quaternion


def euler_to_quaternion(r):
    x = r[..., 0]
    y = r[..., 1]
    z = r[..., 2]

    z = z / 2.0
    y = y / 2.0
    x = x / 2.0
    cz = torch.cos(z)
    sz = torch.sin(z)
    cy = torch.cos(y)
    sy = torch.sin(y)
    cx = torch.cos(x)
    sx = torch.sin(x)
    quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device)
    quaternion[..., 0] += cx * cy * cz - sx * sy * sz
    quaternion[..., 1] += cx * sy * sz + cy * cz * sx
    quaternion[..., 2] += cx * cz * sy - sx * cy * sz
    quaternion[..., 3] += cx * cy * sz + sx * cz * sy
    return quaternion


def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
    """Convert 3x4 rotation matrix to 4d quaternion vector

    This algorithm is based on algorithm described in
    https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201

    Args:
        rotation_matrix (Tensor): the rotation matrix to convert.

    Return:
        Tensor: the rotation in quaternion

    Shape:
        - Input: :math:`(N, 3, 4)`
        - Output: :math:`(N, 4)`

    Example:
        >>> input = torch.rand(4, 3, 4)  # Nx3x4
        >>> output = tgm.rotation_matrix_to_quaternion(input)  # Nx4
    """
    if not torch.is_tensor(rotation_matrix):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(rotation_matrix)))

    if len(rotation_matrix.shape) > 3:
        raise ValueError(
            "Input size must be a three dimensional tensor. Got {}".format(
                rotation_matrix.shape))
    # if not rotation_matrix.shape[-2:] == (3, 4):
    #     raise ValueError(
    #         "Input size must be a N x 3 x 4  tensor. Got {}".format(
    #             rotation_matrix.shape))

    rmat_t = torch.transpose(rotation_matrix, 1, 2)

    mask_d2 = rmat_t[:, 2, 2] < eps

    mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
    mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]

    t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
    q0 = torch.stack([
        rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0,
        rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
    ], -1)
    t0_rep = t0.repeat(4, 1).t()

    t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
    q1 = torch.stack([
        rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
        t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
    ], -1)
    t1_rep = t1.repeat(4, 1).t()

    t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
    q2 = torch.stack([
        rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
        rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
    ], -1)
    t2_rep = t2.repeat(4, 1).t()

    t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
    q3 = torch.stack([
        t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
        rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
    ], -1)
    t3_rep = t3.repeat(4, 1).t()

    mask_c0 = mask_d2 * mask_d0_d1.float()
    mask_c1 = mask_d2 * (1 - mask_d0_d1.float())
    mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1
    mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float())
    mask_c0 = mask_c0.view(-1, 1).type_as(q0)
    mask_c1 = mask_c1.view(-1, 1).type_as(q1)
    mask_c2 = mask_c2.view(-1, 1).type_as(q2)
    mask_c3 = mask_c3.view(-1, 1).type_as(q3)

    q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
    q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 +  # noqa
                    t2_rep * mask_c2 + t3_rep * mask_c3)  # noqa
    q *= 0.5
    return q


def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor:
    """Convert an angle axis to a quaternion.

    Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h

    Args:
        angle_axis (torch.Tensor): tensor with angle axis.

    Return:
        torch.Tensor: tensor with quaternion.

    Shape:
        - Input: :math:`(*, 3)` where `*` means, any number of dimensions
        - Output: :math:`(*, 4)`

    Example:
        >>> angle_axis = torch.rand(2, 4)  # Nx4
        >>> quaternion = tgm.angle_axis_to_quaternion(angle_axis)  # Nx3
    """
    if not torch.is_tensor(angle_axis):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(angle_axis)))

    if not angle_axis.shape[-1] == 3:
        raise ValueError(
            "Input must be a tensor of shape Nx3 or 3. Got {}".format(
                angle_axis.shape))
    # unpack input and compute conversion
    a0: torch.Tensor = angle_axis[..., 0:1]
    a1: torch.Tensor = angle_axis[..., 1:2]
    a2: torch.Tensor = angle_axis[..., 2:3]
    theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2

    theta: torch.Tensor = torch.sqrt(theta_squared)
    half_theta: torch.Tensor = theta * 0.5

    mask: torch.Tensor = theta_squared > 0.0
    ones: torch.Tensor = torch.ones_like(half_theta)

    k_neg: torch.Tensor = 0.5 * ones
    k_pos: torch.Tensor = torch.sin(half_theta) / theta
    k: torch.Tensor = torch.where(mask, k_pos, k_neg)
    w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones)

    quaternion: torch.Tensor = torch.zeros_like(angle_axis)
    quaternion[..., 0:1] += a0 * k
    quaternion[..., 1:2] += a1 * k
    quaternion[..., 2:3] += a2 * k
    return torch.cat([w, quaternion], dim=-1)


# quaternion to


def quaternion_to_rotation_matrix(quat):
    """Convert quaternion coefficients to rotation matrix.
    Args:
        quat: size = [B, 4] 4 <===>(w, x, y, z)
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """
    norm_quat = quat
    norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
    w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
                                                             2], norm_quat[:,
                                                                           3]

    B = quat.size(0)

    w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    wx, wy, wz = w * x, w * y, w * z
    xy, xz, yz = x * y, x * z, y * z

    rotMat = torch.stack([
        w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
        w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
        w2 - x2 - y2 + z2
    ],
                         dim=1).view(B, 3, 3)
    return rotMat


def quaternion_to_angle_axis(quaternion: torch.Tensor):
    """Convert quaternion vector to angle axis of rotation. TODO: CORRECT

    Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h

    Args:
        quaternion (torch.Tensor): tensor with quaternions.

    Return:
        torch.Tensor: tensor with angle axis of rotation.

    Shape:
        - Input: :math:`(*, 4)` where `*` means, any number of dimensions
        - Output: :math:`(*, 3)`

    Example:
        >>> quaternion = torch.rand(2, 4)  # Nx4
        >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion)  # Nx3
    """
    if not torch.is_tensor(quaternion):
        raise TypeError("Input type is not a torch.Tensor. Got {}".format(
            type(quaternion)))

    if not quaternion.shape[-1] == 4:
        raise ValueError(
            "Input must be a tensor of shape Nx4 or 4. Got {}".format(
                quaternion.shape))
    # unpack input and compute conversion
    q1: torch.Tensor = quaternion[..., 1]
    q2: torch.Tensor = quaternion[..., 2]
    q3: torch.Tensor = quaternion[..., 3]
    sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3

    sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
    cos_theta: torch.Tensor = quaternion[..., 0]
    two_theta: torch.Tensor = 2.0 * torch.where(
        cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
        torch.atan2(sin_theta, cos_theta))

    k_pos: torch.Tensor = two_theta / sin_theta
    k_neg: torch.Tensor = 2.0 * \
        torch.ones_like(sin_theta).to(quaternion.device)
    k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)

    angle_axis: torch.Tensor = torch.zeros_like(quaternion).to(
        quaternion.device)[..., :3]
    angle_axis[..., 0] += q1 * k
    angle_axis[..., 1] += q2 * k
    angle_axis[..., 2] += q3 * k
    return angle_axis


# credit to Muhammed Kocabas
# matrix to euler angle
# Device = Union[str, torch.device]
_AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2}


def _elementary_basis_vector(axis):
    b = torch.zeros(3)
    b[_AXIS_TO_IND[axis]] = 1
    return b


def _compute_euler_from_matrix(dcm, seq='xyz', extrinsic=False):
    # The algorithm assumes intrinsic frame transformations. For representation
    # the paper uses transformation matrices, which are transpose of the
    # direction cosine matrices used by our Rotation class.
    # Adapt the algorithm for our case by
    # 1. Instead of transposing our representation, use the transpose of the
    #    O matrix as defined in the paper, and be careful to swap indices
    # 2. Reversing both axis sequence and angles for extrinsic rotations
    orig_device = dcm.device
    dcm = dcm.to('cpu')
    seq = seq.lower()

    if extrinsic:
        seq = seq[::-1]

    if dcm.ndim == 2:
        dcm = dcm[None, :, :]
    num_rotations = dcm.shape[0]

    device = dcm.device

    # Step 0
    # Algorithm assumes axes as column vectors, here we use 1D vectors
    n1 = _elementary_basis_vector(seq[0])
    n2 = _elementary_basis_vector(seq[1])
    n3 = _elementary_basis_vector(seq[2])

    # Step 2
    sl = torch.dot(torch.cross(n1, n2), n3)
    cl = torch.dot(n1, n3)

    # angle offset is lambda from the paper referenced in [2] from docstring of
    # `as_euler` function
    offset = torch.atan2(sl, cl)
    c = torch.stack((n2, torch.cross(n1, n2), n1)).type(dcm.dtype).to(device)

    # Step 3
    rot = torch.tensor([
        [1, 0, 0],
        [0, cl, sl],
        [0, -sl, cl],
    ]).type(dcm.dtype)
    # import IPython; IPython.embed(); exit
    res = torch.einsum('ij,...jk->...ik', c, dcm)
    dcm_transformed = torch.einsum('...ij,jk->...ik', res, c.T @ rot)

    # Step 4
    angles = torch.zeros((num_rotations, 3), dtype=dcm.dtype, device=device)

    # Ensure less than unit norm
    positive_unity = dcm_transformed[:, 2, 2] > 1
    negative_unity = dcm_transformed[:, 2, 2] < -1
    dcm_transformed[positive_unity, 2, 2] = 1
    dcm_transformed[negative_unity, 2, 2] = -1
    angles[:, 1] = torch.acos(dcm_transformed[:, 2, 2])

    # Steps 5, 6
    eps = 1e-7
    safe1 = (torch.abs(angles[:, 1]) >= eps)
    safe2 = (torch.abs(angles[:, 1] - np.pi) >= eps)

    # Step 4 (Completion)
    angles[:, 1] += offset

    # 5b
    safe_mask = torch.logical_and(safe1, safe2)
    angles[safe_mask, 0] = torch.atan2(dcm_transformed[safe_mask, 0, 2],
                                       -dcm_transformed[safe_mask, 1, 2])
    angles[safe_mask, 2] = torch.atan2(dcm_transformed[safe_mask, 2, 0],
                                       dcm_transformed[safe_mask, 2, 1])
    if extrinsic:
        # For extrinsic, set first angle to zero so that after reversal we
        # ensure that third angle is zero
        # 6a
        angles[~safe_mask, 0] = 0
        # 6b
        angles[~safe1, 2] = torch.atan2(
            dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
            dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1])
        # 6c
        angles[~safe2, 2] = -torch.atan2(
            dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
            dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1])
    else:
        # For instrinsic, set third angle to zero
        # 6a
        angles[~safe_mask, 2] = 0
        # 6b
        angles[~safe1, 0] = torch.atan2(
            dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
            dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1])
        # 6c
        angles[~safe2, 0] = torch.atan2(
            dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
            dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1])

    # Step 7
    if seq[0] == seq[2]:
        # lambda = 0, so we can only ensure angle2 -> [0, pi]
        adjust_mask = torch.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi)
    else:
        # lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2]
        adjust_mask = torch.logical_or(angles[:, 1] < -np.pi / 2,
                                       angles[:, 1] > np.pi / 2)

    # Dont adjust gimbal locked angle sequences
    adjust_mask = torch.logical_and(adjust_mask, safe_mask)

    angles[adjust_mask, 0] += np.pi
    angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1]
    angles[adjust_mask, 2] -= np.pi

    angles[angles < -np.pi] += 2 * np.pi
    angles[angles > np.pi] -= 2 * np.pi

    # Step 8
    if not torch.all(safe_mask):
        print("Gimbal lock detected. Setting third angle to zero since"
              "it is not possible to uniquely determine all angles.")

    # Reverse role of extrinsic and intrinsic rotations, but let third angle be
    # zero for gimbal locked cases
    if extrinsic:
        # angles = angles[:, ::-1]
        angles = torch.flip(angles, dims=[
            -1,
        ])

    angles = angles.to(orig_device)
    return angles


# batch converter


def batch_euler2axis(r):
    return quaternion_to_angle_axis(euler_to_quaternion(r))


def batch_euler2matrix(r):
    return quaternion_to_rotation_matrix(euler_to_quaternion(r))


def batch_matrix2euler(rot_mats):
    # Calculates rotation matrix to euler angles
    # Careful for extreme cases of eular angles like [0.0, pi, 0.0]
    # only y biw
    # TODO: add x, z
    sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
                    rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
    return torch.atan2(-rot_mats[:, 2, 0], sy)


def batch_matrix2axis(rot_mats):
    return quaternion_to_angle_axis(rotation_matrix_to_quaternion(rot_mats))


def batch_axis2matrix(theta):
    # angle axis to rotation matrix
    # theta N x 3
    # return quat2mat(quat)
    # batch_rodrigues
    return quaternion_to_rotation_matrix(angle_axis_to_quaternion(theta))


def batch_axis2euler(theta):
    return batch_matrix2euler(batch_axis2matrix(theta))


def batch_axis2euler(r):
    return rot_mat_to_euler(batch_rodrigues(r))


def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
    '''  same as batch_matrix2axis
    Calculates the rotation matrices for a batch of rotation vectors
        Parameters
        ----------
        rot_vecs: torch.tensor Nx3
            array of N axis-angle vectors
        Returns
        -------
        R: torch.tensor Nx3x3
            The rotation matrices for the given axis-angle parameters
    Code from smplx/flame, what PS people often use
    '''

    batch_size = rot_vecs.shape[0]
    device = rot_vecs.device

    angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
    rot_dir = rot_vecs / angle

    cos = torch.unsqueeze(torch.cos(angle), dim=1)
    sin = torch.unsqueeze(torch.sin(angle), dim=1)

    # Bx1 arrays
    rx, ry, rz = torch.split(rot_dir, 1, dim=1)
    K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)

    zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
    K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
        .view((batch_size, 3, 3))

    ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
    rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
    return rot_mat


def batch_cont2matrix(module_input):
    ''' Decoder for transforming a latent representation to rotation matrices

        Implements the decoding method described in:
        "On the Continuity of Rotation Representations in Neural Networks"
        Code from https://github.com/vchoutas/expose
    '''
    batch_size = module_input.shape[0]
    reshaped_input = module_input.reshape(-1, 3, 2)

    # Normalize the first vector
    b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1)

    dot_prod = torch.sum(b1 * reshaped_input[:, :, 1].clone(),
                         dim=1,
                         keepdim=True)
    # Compute the second vector by finding the orthogonal complement to it
    b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1)
    # Finish building the basis by taking the cross product
    b3 = torch.cross(b1, b2, dim=1)
    rot_mats = torch.stack([b1, b2, b3], dim=-1)

    return rot_mats.view(batch_size, -1, 3, 3)