File size: 6,259 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
crop
for torch tensor
Given image, bbox(center, bboxsize)
return: cropped image, tform(used for transform the keypoint accordingly)

only support crop to squared images
'''
import torch
from kornia.geometry.transform.imgwarp import (warp_perspective,
                                               get_perspective_transform,
                                               warp_affine)


def points2bbox(points, points_scale=None):
    if points_scale:
        assert points_scale[0] == points_scale[1]
        points = points.clone()
        points[:, :, :2] = (points[:, :, :2] * 0.5 + 0.5) * points_scale[0]
    min_coords, _ = torch.min(points, dim=1)
    xmin, ymin = min_coords[:, 0], min_coords[:, 1]
    max_coords, _ = torch.max(points, dim=1)
    xmax, ymax = max_coords[:, 0], max_coords[:, 1]
    center = torch.stack([xmax + xmin, ymax + ymin], dim=-1) * 0.5

    width = (xmax - xmin)
    height = (ymax - ymin)
    # Convert the bounding box to a square box
    size = torch.max(width, height).unsqueeze(-1)
    return center, size


def augment_bbox(center, bbox_size, scale=[1.0, 1.0], trans_scale=0.):
    batch_size = center.shape[0]
    trans_scale = (torch.rand([batch_size, 2], device=center.device) * 2. -
                   1.) * trans_scale
    center = center + trans_scale * bbox_size  # 0.5
    scale = torch.rand([batch_size, 1], device=center.device) * \
        (scale[1] - scale[0]) + scale[0]
    size = bbox_size * scale
    return center, size


def crop_tensor(image,
                center,
                bbox_size,
                crop_size,
                interpolation='bilinear',
                align_corners=False):
    ''' for batch image
    Args:
        image (torch.Tensor): the reference tensor of shape BXHxWXC.
        center: [bz, 2]
        bboxsize: [bz, 1]
        crop_size;
        interpolation (str): Interpolation flag. Default: 'bilinear'.
        align_corners (bool): mode for grid_generation. Default: False. See
          https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.interpolate for details
    Returns:
        cropped_image
        tform
    '''
    dtype = image.dtype
    device = image.device
    batch_size = image.shape[0]
    # points: top-left, top-right, bottom-right, bottom-left
    src_pts = torch.zeros([4, 2], dtype=dtype,
                          device=device).unsqueeze(0).expand(
                              batch_size, -1, -1).contiguous()

    src_pts[:, 0, :] = center - bbox_size * 0.5  # / (self.crop_size - 1)
    src_pts[:, 1, 0] = center[:, 0] + bbox_size[:, 0] * 0.5
    src_pts[:, 1, 1] = center[:, 1] - bbox_size[:, 0] * 0.5
    src_pts[:, 2, :] = center + bbox_size * 0.5
    src_pts[:, 3, 0] = center[:, 0] - bbox_size[:, 0] * 0.5
    src_pts[:, 3, 1] = center[:, 1] + bbox_size[:, 0] * 0.5

    DST_PTS = torch.tensor([[
        [0, 0],
        [crop_size - 1, 0],
        [crop_size - 1, crop_size - 1],
        [0, crop_size - 1],
    ]],
                           dtype=dtype,
                           device=device).expand(batch_size, -1, -1)
    # estimate transformation between points
    dst_trans_src = get_perspective_transform(src_pts, DST_PTS)
    # simulate broadcasting
    # dst_trans_src = dst_trans_src.expand(batch_size, -1, -1)

    # warp images
    cropped_image = warp_affine(image,
                                dst_trans_src[:, :2, :],
                                (crop_size, crop_size),
                                mode=interpolation,
                                align_corners=align_corners)

    tform = torch.transpose(dst_trans_src, 2, 1)
    # tform = torch.inverse(dst_trans_src)
    return cropped_image, tform


class Cropper(object):

    def __init__(self, crop_size, scale=[1, 1], trans_scale=0.):
        self.crop_size = crop_size
        self.scale = scale
        self.trans_scale = trans_scale

    def crop(self, image, points, points_scale=None):
        # points to bbox
        center, bbox_size = points2bbox(points.clone(), points_scale)
        # argument bbox. TODO: add rotation?
        center, bbox_size = augment_bbox(center,
                                         bbox_size,
                                         scale=self.scale,
                                         trans_scale=self.trans_scale)
        # crop
        cropped_image, tform = crop_tensor(image, center, bbox_size,
                                           self.crop_size)
        return cropped_image, tform

    def transform_points(self,
                         points,
                         tform,
                         points_scale=None,
                         normalize=True):
        points_2d = points[:, :, :2]

        #'input points must use original range'
        if points_scale:
            assert points_scale[0] == points_scale[1]
            points_2d = (points_2d * 0.5 + 0.5) * points_scale[0]

        batch_size, n_points, _ = points.shape
        trans_points_2d = torch.bmm(
            torch.cat([
                points_2d,
                torch.ones([batch_size, n_points, 1],
                           device=points.device,
                           dtype=points.dtype)
            ],
                      dim=-1), tform)
        trans_points = torch.cat([trans_points_2d[:, :, :2], points[:, :, 2:]],
                                 dim=-1)
        if normalize:
            trans_points[:, :, :2] = trans_points[:, :, :2] / \
                self.crop_size*2 - 1
        return trans_points


def transform_points(points, tform, points_scale=None):
    points_2d = points[:, :, :2]

    #'input points must use original range'
    if points_scale:
        assert points_scale[0] == points_scale[1]
        points_2d = (points_2d * 0.5 + 0.5) * points_scale[0]
    # import ipdb; ipdb.set_trace()

    batch_size, n_points, _ = points.shape
    trans_points_2d = torch.bmm(
        torch.cat([
            points_2d,
            torch.ones([batch_size, n_points, 1],
                       device=points.device,
                       dtype=points.dtype)
        ],
                  dim=-1), tform)
    trans_points = torch.cat([trans_points_2d[:, :, :2], points[:, :, 2:]],
                             dim=-1)
    return trans_points