Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,539 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import argparse
class TrainOptions():
def __init__(self):
self.parser = argparse.ArgumentParser()
gen = self.parser.add_argument_group('General')
gen.add_argument(
'--resume',
dest='resume',
default=False,
action='store_true',
help='Resume from checkpoint (Use latest checkpoint by default')
io = self.parser.add_argument_group('io')
io.add_argument('--log_dir',
default='logs',
help='Directory to store logs')
io.add_argument(
'--pretrained_checkpoint',
default=None,
help='Load a pretrained checkpoint at the beginning training')
train = self.parser.add_argument_group('Training Options')
train.add_argument('--num_epochs',
type=int,
default=200,
help='Total number of training epochs')
train.add_argument('--regressor',
type=str,
choices=['hmr', 'pymaf_net'],
default='pymaf_net',
help='Name of the SMPL regressor.')
train.add_argument('--cfg_file',
type=str,
default='./configs/pymaf_config.yaml',
help='config file path for PyMAF.')
train.add_argument(
'--img_res',
type=int,
default=224,
help=
'Rescale bounding boxes to size [img_res, img_res] before feeding them in the network'
)
train.add_argument(
'--rot_factor',
type=float,
default=30,
help='Random rotation in the range [-rot_factor, rot_factor]')
train.add_argument(
'--noise_factor',
type=float,
default=0.4,
help=
'Randomly multiply pixel values with factor in the range [1-noise_factor, 1+noise_factor]'
)
train.add_argument(
'--scale_factor',
type=float,
default=0.25,
help=
'Rescale bounding boxes by a factor of [1-scale_factor,1+scale_factor]'
)
train.add_argument(
'--openpose_train_weight',
default=0.,
help='Weight for OpenPose keypoints during training')
train.add_argument('--gt_train_weight',
default=1.,
help='Weight for GT keypoints during training')
train.add_argument('--eval_dataset',
type=str,
default='h36m-p2-mosh',
help='Name of the evaluation dataset.')
train.add_argument('--single_dataset',
default=False,
action='store_true',
help='Use a single dataset')
train.add_argument('--single_dataname',
type=str,
default='h36m',
help='Name of the single dataset.')
train.add_argument('--eval_pve',
default=False,
action='store_true',
help='evaluate PVE')
train.add_argument('--overwrite',
default=False,
action='store_true',
help='overwrite the latest checkpoint')
train.add_argument('--distributed',
action='store_true',
help='Use distributed training')
train.add_argument('--dist_backend',
default='nccl',
type=str,
help='distributed backend')
train.add_argument('--dist_url',
default='tcp://127.0.0.1:10356',
type=str,
help='url used to set up distributed training')
train.add_argument('--world_size',
default=1,
type=int,
help='number of nodes for distributed training')
train.add_argument("--local_rank", default=0, type=int)
train.add_argument('--rank',
default=0,
type=int,
help='node rank for distributed training')
train.add_argument(
'--multiprocessing_distributed',
action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
misc = self.parser.add_argument_group('Misc Options')
misc.add_argument('--misc',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
return
def parse_args(self):
"""Parse input arguments."""
self.args = self.parser.parse_args()
self.save_dump()
return self.args
def save_dump(self):
"""Store all argument values to a json file.
The default location is logs/expname/args.json.
"""
pass
|