Spaces:
Running
on
L40S
Running
on
L40S
File size: 10,147 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# This script is borrowed and extended from https://github.com/shunsukesaito/PIFu/blob/master/lib/model/SurfaceClassifier.py
import torch
import scipy
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from lib.pymafx.core import path_config
from lib.pymafx.utils.geometry import projection
import logging
logger = logging.getLogger(__name__)
from .transformers.net_utils import PosEnSine
from .transformers.transformer_basics import OurMultiheadAttention
from lib.pymafx.utils.imutils import j2d_processing
class TransformerDecoderUnit(nn.Module):
def __init__(
self, feat_dim, attri_dim=0, n_head=8, pos_en_flag=True, attn_type='softmax', P=None
):
super(TransformerDecoderUnit, self).__init__()
self.feat_dim = feat_dim
self.attn_type = attn_type
self.pos_en_flag = pos_en_flag
self.P = P
assert attri_dim == 0
if self.pos_en_flag:
pe_dim = 10
self.pos_en = PosEnSine(pe_dim)
else:
pe_dim = 0
self.attn = OurMultiheadAttention(
feat_dim + attri_dim + pe_dim * 3, feat_dim + pe_dim * 3, feat_dim, n_head
) # cross-attention
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.activation = nn.ReLU(inplace=True)
self.norm = nn.BatchNorm2d(self.feat_dim)
def forward(self, q, k, v, pos=None):
if self.pos_en_flag:
q_pos_embed = self.pos_en(q, pos)
k_pos_embed = self.pos_en(k)
q = torch.cat([q, q_pos_embed], dim=1)
k = torch.cat([k, k_pos_embed], dim=1)
# else:
# q_pos_embed = 0
# k_pos_embed = 0
# cross-multi-head attention
out = self.attn(q=q, k=k, v=v, attn_type=self.attn_type, P=self.P)[0]
# feed forward
out2 = self.linear2(self.activation(self.linear1(out)))
out = out + out2
out = self.norm(out)
return out
class Mesh_Sampler(nn.Module):
''' Mesh Up/Down-sampling
'''
def __init__(self, type='smpl', level=2, device=torch.device('cuda'), option=None):
super().__init__()
# downsample SMPL mesh and assign part labels
if type == 'smpl':
# from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
smpl_mesh_graph = np.load(
path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
)
A = smpl_mesh_graph['A']
U = smpl_mesh_graph['U']
D = smpl_mesh_graph['D'] # shape: (2,)
elif type == 'mano':
# from https://github.com/microsoft/MeshGraphormer/blob/main/src/modeling/data/mano_downsampling.npz
mano_mesh_graph = np.load(
path_config.MANO_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
)
A = mano_mesh_graph['A']
U = mano_mesh_graph['U']
D = mano_mesh_graph['D'] # shape: (2,)
# downsampling
ptD = []
for lv in range(len(D)):
d = scipy.sparse.coo_matrix(D[lv])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
# downsampling mapping from 6890 points to 431 points
# ptD[0].to_dense() - Size: [1723, 6890] , [195, 778]
# ptD[1].to_dense() - Size: [431, 1723] , [49, 195]
if level == 2:
Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense()) # 6890 -> 431
elif level == 1:
Dmap = ptD[0].to_dense() #
self.register_buffer('Dmap', Dmap)
# upsampling
ptU = []
for lv in range(len(U)):
d = scipy.sparse.coo_matrix(U[lv])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptU.append(torch.sparse.FloatTensor(i, v, d.shape))
# upsampling mapping from 431 points to 6890 points
# ptU[0].to_dense() - Size: [6890, 1723]
# ptU[1].to_dense() - Size: [1723, 431]
if level == 2:
Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense()) # 431 -> 6890
elif level == 1:
Umap = ptU[0].to_dense() #
self.register_buffer('Umap', Umap)
def downsample(self, x):
return torch.matmul(self.Dmap.unsqueeze(0), x) # [B, 431, 3]
def upsample(self, x):
return torch.matmul(self.Umap.unsqueeze(0), x) # [B, 6890, 3]
def forward(self, x, mode='downsample'):
if mode == 'downsample':
return self.downsample(x)
elif mode == 'upsample':
return self.upsample(x)
class MAF_Extractor(nn.Module):
''' Mesh-aligned Feature Extrator
As discussed in the paper, we extract mesh-aligned features based on 2D projection of the mesh vertices.
The features extrated from spatial feature maps will go through a MLP for dimension reduction.
'''
def __init__(
self, filter_channels, device=torch.device('cuda'), iwp_cam_mode=True, option=None
):
super().__init__()
self.device = device
self.filters = []
self.num_views = 1
self.last_op = nn.ReLU(True)
self.iwp_cam_mode = iwp_cam_mode
for l in range(0, len(filter_channels) - 1):
if 0 != l:
self.filters.append(
nn.Conv1d(filter_channels[l] + filter_channels[0], filter_channels[l + 1], 1)
)
else:
self.filters.append(nn.Conv1d(filter_channels[l], filter_channels[l + 1], 1))
self.add_module("conv%d" % l, self.filters[l])
# downsample SMPL mesh and assign part labels
# from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
smpl_mesh_graph = np.load(
path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
)
A = smpl_mesh_graph['A']
U = smpl_mesh_graph['U']
D = smpl_mesh_graph['D'] # shape: (2,)
# downsampling
ptD = []
for level in range(len(D)):
d = scipy.sparse.coo_matrix(D[level])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
# downsampling mapping from 6890 points to 431 points
# ptD[0].to_dense() - Size: [1723, 6890]
# ptD[1].to_dense() - Size: [431. 1723]
Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense()) # 6890 -> 431
self.register_buffer('Dmap', Dmap)
# upsampling
ptU = []
for level in range(len(U)):
d = scipy.sparse.coo_matrix(U[level])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptU.append(torch.sparse.FloatTensor(i, v, d.shape))
# upsampling mapping from 431 points to 6890 points
# ptU[0].to_dense() - Size: [6890, 1723]
# ptU[1].to_dense() - Size: [1723, 431]
Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense()) # 431 -> 6890
self.register_buffer('Umap', Umap)
def reduce_dim(self, feature):
'''
Dimension reduction by multi-layer perceptrons
:param feature: list of [B, C_s, N] point-wise features before dimension reduction
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
'''
y = feature
tmpy = feature
for i, f in enumerate(self.filters):
y = self._modules['conv' + str(i)](y if i == 0 else torch.cat([y, tmpy], 1))
if i != len(self.filters) - 1:
y = F.leaky_relu(y)
if self.num_views > 1 and i == len(self.filters) // 2:
y = y.view(-1, self.num_views, y.shape[1], y.shape[2]).mean(dim=1)
tmpy = feature.view(-1, self.num_views, feature.shape[1],
feature.shape[2]).mean(dim=1)
y = self.last_op(y)
# y = y.view(y.shape[0], -1)
return y
def sampling(self, points, im_feat=None, z_feat=None, add_att=False, reduce_dim=True):
'''
Given 2D points, sample the point-wise features for each point,
the dimension of point-wise features will be reduced from C_s to C_p by MLP.
Image features should be pre-computed before this call.
:param points: [B, N, 2] image coordinates of points
:im_feat: [B, C_s, H_s, W_s] spatial feature maps
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
'''
# if im_feat is None:
# im_feat = self.im_feat
batch_size = im_feat.shape[0]
point_feat = torch.nn.functional.grid_sample(
im_feat, points.unsqueeze(2), align_corners=False
)[..., 0]
if reduce_dim:
mesh_align_feat = self.reduce_dim(point_feat)
return mesh_align_feat
else:
return point_feat
def forward(self, p, im_feat, cam=None, add_att=False, reduce_dim=True, **kwargs):
''' Returns mesh-aligned features for the 3D mesh points.
Args:
p (tensor): [B, N_m, 3] mesh vertices
im_feat (tensor): [B, C_s, H_s, W_s] spatial feature maps
cam (tensor): [B, 3] camera
Return:
mesh_align_feat (tensor): [B, C_p x N_m] mesh-aligned features
'''
# if cam is None:
# cam = self.cam
p_proj_2d = projection(p, cam, retain_z=False, iwp_mode=self.iwp_cam_mode)
if self.iwp_cam_mode:
# Normalize keypoints to [-1,1]
p_proj_2d = p_proj_2d / (224. / 2.)
else:
p_proj_2d = j2d_processing(p_proj_2d, cam['kps_transf'])
mesh_align_feat = self.sampling(p_proj_2d, im_feat, add_att=add_att, reduce_dim=reduce_dim)
return mesh_align_feat
|