File size: 14,260 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import time
import torch
import trimesh
import numpy as np
import torch.optim as optim
from torch import autograd
from torch.utils.data import TensorDataset, DataLoader

from .common import make_3d_grid
from .utils import libmcubes
from .utils.libmise import MISE
from .utils.libsimplify import simplify_mesh
from .common import transform_pointcloud


class Generator3D(object):
    '''  Generator class for DVRs.

    It provides functions to generate the final mesh as well refining options.

    Args:
        model (nn.Module): trained DVR model
        points_batch_size (int): batch size for points evaluation
        threshold (float): threshold value
        refinement_step (int): number of refinement steps
        device (device): pytorch device
        resolution0 (int): start resolution for MISE
        upsampling steps (int): number of upsampling steps
        with_normals (bool): whether normals should be estimated
        padding (float): how much padding should be used for MISE
        simplify_nfaces (int): number of faces the mesh should be simplified to
        refine_max_faces (int): max number of faces which are used as batch
            size for refinement process (we added this functionality in this
            work)
    '''
    def __init__(
        self,
        model,
        points_batch_size=100000,
        threshold=0.5,
        refinement_step=0,
        device=None,
        resolution0=16,
        upsampling_steps=3,
        with_normals=False,
        padding=0.1,
        simplify_nfaces=None,
        with_color=False,
        refine_max_faces=10000
    ):
        self.model = model.to(device)
        self.points_batch_size = points_batch_size
        self.refinement_step = refinement_step
        self.threshold = threshold
        self.device = device
        self.resolution0 = resolution0
        self.upsampling_steps = upsampling_steps
        self.with_normals = with_normals
        self.padding = padding
        self.simplify_nfaces = simplify_nfaces
        self.with_color = with_color
        self.refine_max_faces = refine_max_faces

    def generate_mesh(self, data, return_stats=True):
        ''' Generates the output mesh.

        Args:
            data (tensor): data tensor
            return_stats (bool): whether stats should be returned
        '''
        self.model.eval()
        device = self.device
        stats_dict = {}

        inputs = data.get('inputs', torch.empty(1, 0)).to(device)
        kwargs = {}

        c = self.model.encode_inputs(inputs)
        mesh = self.generate_from_latent(c, stats_dict=stats_dict, data=data, **kwargs)

        return mesh, stats_dict

    def generate_meshes(self, data, return_stats=True):
        ''' Generates the output meshes with data of batch size >=1

        Args:
            data (tensor): data tensor
            return_stats (bool): whether stats should be returned
        '''
        self.model.eval()
        device = self.device
        stats_dict = {}

        inputs = data.get('inputs', torch.empty(1, 1, 0)).to(device)

        meshes = []
        for i in range(inputs.shape[0]):
            input_i = inputs[i].unsqueeze(0)
            c = self.model.encode_inputs(input_i)
            mesh = self.generate_from_latent(c, stats_dict=stats_dict)
            meshes.append(mesh)

        return meshes

    def generate_pointcloud(self, mesh, data=None, n_points=2000000, scale_back=True):
        ''' Generates a point cloud from the mesh.

        Args:
            mesh (trimesh): mesh
            data (dict): data dictionary
            n_points (int): number of point cloud points
            scale_back (bool): whether to undo scaling (requires a scale
                matrix in data dictionary)
        '''
        pcl = mesh.sample(n_points).astype(np.float32)

        if scale_back:
            scale_mat = data.get('camera.scale_mat_0', None)
            if scale_mat is not None:
                pcl = transform_pointcloud(pcl, scale_mat[0])
            else:
                print('Warning: No scale_mat found!')
        pcl_out = trimesh.Trimesh(vertices=pcl, process=False)
        return pcl_out

    def generate_from_latent(self, c=None, pl=None, stats_dict={}, data=None, **kwargs):
        ''' Generates mesh from latent.

        Args:
            c (tensor): latent conditioned code c
            pl (tensor): predicted plane parameters
            stats_dict (dict): stats dictionary
        '''
        threshold = np.log(self.threshold) - np.log(1. - self.threshold)

        t0 = time.time()
        # Compute bounding box size
        box_size = 1 + self.padding

        # Shortcut
        if self.upsampling_steps == 0:
            nx = self.resolution0
            pointsf = box_size * make_3d_grid((-0.5, ) * 3, (0.5, ) * 3, (nx, ) * 3)
            values = self.eval_points(pointsf, c, pl, **kwargs).cpu().numpy()
            value_grid = values.reshape(nx, nx, nx)
        else:
            mesh_extractor = MISE(self.resolution0, self.upsampling_steps, threshold)

            points = mesh_extractor.query()

            while points.shape[0] != 0:
                # Query points
                pointsf = torch.FloatTensor(points).to(self.device)
                # Normalize to bounding box
                pointsf = 2 * pointsf / mesh_extractor.resolution
                pointsf = box_size * (pointsf - 1.0)
                # Evaluate model and update
                values = self.eval_points(pointsf, c, pl, **kwargs).cpu().numpy()

                values = values.astype(np.float64)
                mesh_extractor.update(points, values)
                points = mesh_extractor.query()

            value_grid = mesh_extractor.to_dense()

        # Extract mesh
        stats_dict['time (eval points)'] = time.time() - t0

        mesh = self.extract_mesh(value_grid, c, stats_dict=stats_dict)
        return mesh

    def eval_points(self, p, c=None, pl=None, **kwargs):
        ''' Evaluates the occupancy values for the points.

        Args:
            p (tensor): points
            c (tensor): latent conditioned code c
        '''
        p_split = torch.split(p, self.points_batch_size)
        occ_hats = []

        for pi in p_split:
            pi = pi.unsqueeze(0).to(self.device)
            with torch.no_grad():
                occ_hat = self.model.decode(pi, c, pl, **kwargs).logits

            occ_hats.append(occ_hat.squeeze(0).detach().cpu())

        occ_hat = torch.cat(occ_hats, dim=0)

        return occ_hat

    def extract_mesh(self, occ_hat, c=None, stats_dict=dict()):
        ''' Extracts the mesh from the predicted occupancy grid.

        Args:
            occ_hat (tensor): value grid of occupancies
            c (tensor): latent conditioned code c
            stats_dict (dict): stats dictionary
        '''
        # Some short hands
        n_x, n_y, n_z = occ_hat.shape
        box_size = 1 + self.padding
        threshold = np.log(self.threshold) - np.log(1. - self.threshold)
        # Make sure that mesh is watertight
        t0 = time.time()
        occ_hat_padded = np.pad(occ_hat, 1, 'constant', constant_values=-1e6)
        vertices, triangles = libmcubes.marching_cubes(occ_hat_padded, threshold)
        stats_dict['time (marching cubes)'] = time.time() - t0
        # Strange behaviour in libmcubes: vertices are shifted by 0.5
        vertices -= 0.5
        # Undo padding
        vertices -= 1
        # Normalize to bounding box
        vertices /= np.array([n_x - 1, n_y - 1, n_z - 1])
        vertices *= 2
        vertices = box_size * (vertices - 1)

        # mesh_pymesh = pymesh.form_mesh(vertices, triangles)
        # mesh_pymesh = fix_pymesh(mesh_pymesh)

        # Estimate normals if needed
        if self.with_normals and not vertices.shape[0] == 0:
            t0 = time.time()
            normals = self.estimate_normals(vertices, c)
            stats_dict['time (normals)'] = time.time() - t0
        else:
            normals = None
        # Create mesh
        mesh = trimesh.Trimesh(
            vertices,
            triangles,
            vertex_normals=normals,
        # vertex_colors=vertex_colors,
            process=False
        )

        # Directly return if mesh is empty
        if vertices.shape[0] == 0:
            return mesh

        # TODO: normals are lost here
        if self.simplify_nfaces is not None:
            t0 = time.time()
            mesh = simplify_mesh(mesh, self.simplify_nfaces, 5.)
            stats_dict['time (simplify)'] = time.time() - t0

        # Refine mesh
        if self.refinement_step > 0:
            t0 = time.time()
            self.refine_mesh(mesh, occ_hat, c)
            stats_dict['time (refine)'] = time.time() - t0

        # Estimate Vertex Colors
        if self.with_color and not vertices.shape[0] == 0:
            t0 = time.time()
            vertex_colors = self.estimate_colors(np.array(mesh.vertices), c)
            stats_dict['time (color)'] = time.time() - t0
            mesh = trimesh.Trimesh(
                vertices=mesh.vertices,
                faces=mesh.faces,
                vertex_normals=mesh.vertex_normals,
                vertex_colors=vertex_colors,
                process=False
            )

        return mesh

    def estimate_colors(self, vertices, c=None):
        ''' Estimates vertex colors by evaluating the texture field.

        Args:
            vertices (numpy array): vertices of the mesh
            c (tensor): latent conditioned code c
        '''
        device = self.device
        vertices = torch.FloatTensor(vertices)
        vertices_split = torch.split(vertices, self.points_batch_size)
        colors = []
        for vi in vertices_split:
            vi = vi.to(device)
            with torch.no_grad():
                ci = self.model.decode_color(vi.unsqueeze(0), c).squeeze(0).cpu()
            colors.append(ci)

        colors = np.concatenate(colors, axis=0)
        colors = np.clip(colors, 0, 1)
        colors = (colors * 255).astype(np.uint8)
        colors = np.concatenate(
            [colors, np.full((colors.shape[0], 1), 255, dtype=np.uint8)], axis=1
        )
        return colors

    def estimate_normals(self, vertices, c=None):
        ''' Estimates the normals by computing the gradient of the objective.

        Args:
            vertices (numpy array): vertices of the mesh
            z (tensor): latent code z
            c (tensor): latent conditioned code c
        '''
        device = self.device
        vertices = torch.FloatTensor(vertices)
        vertices_split = torch.split(vertices, self.points_batch_size)

        normals = []
        c = c.unsqueeze(0)
        for vi in vertices_split:
            vi = vi.unsqueeze(0).to(device)
            vi.requires_grad_()
            occ_hat = self.model.decode(vi, c).logits
            out = occ_hat.sum()
            out.backward()
            ni = -vi.grad
            ni = ni / torch.norm(ni, dim=-1, keepdim=True)
            ni = ni.squeeze(0).cpu().numpy()
            normals.append(ni)

        normals = np.concatenate(normals, axis=0)
        return normals

    def refine_mesh(self, mesh, occ_hat, c=None):
        ''' Refines the predicted mesh.

        Args:   
            mesh (trimesh object): predicted mesh
            occ_hat (tensor): predicted occupancy grid
            c (tensor): latent conditioned code c
        '''

        self.model.eval()

        # Some shorthands
        n_x, n_y, n_z = occ_hat.shape
        assert (n_x == n_y == n_z)
        # threshold = np.log(self.threshold) - np.log(1. - self.threshold)
        threshold = self.threshold

        # Vertex parameter
        v0 = torch.FloatTensor(mesh.vertices).to(self.device)
        v = torch.nn.Parameter(v0.clone())

        # Faces of mesh
        faces = torch.LongTensor(mesh.faces)

        # detach c; otherwise graph needs to be retained
        # caused by new Pytorch version?
        c = c.detach()

        # Start optimization
        optimizer = optim.RMSprop([v], lr=1e-5)

        # Dataset
        ds_faces = TensorDataset(faces)
        dataloader = DataLoader(ds_faces, batch_size=self.refine_max_faces, shuffle=True)

        # We updated the refinement algorithm to subsample faces; this is
        # usefull when using a high extraction resolution / when working on
        # small GPUs
        it_r = 0
        while it_r < self.refinement_step:
            for f_it in dataloader:
                f_it = f_it[0].to(self.device)
                optimizer.zero_grad()

                # Loss
                face_vertex = v[f_it]
                eps = np.random.dirichlet((0.5, 0.5, 0.5), size=f_it.shape[0])
                eps = torch.FloatTensor(eps).to(self.device)
                face_point = (face_vertex * eps[:, :, None]).sum(dim=1)

                face_v1 = face_vertex[:, 1, :] - face_vertex[:, 0, :]
                face_v2 = face_vertex[:, 2, :] - face_vertex[:, 1, :]
                face_normal = torch.cross(face_v1, face_v2)
                face_normal = face_normal / \
                    (face_normal.norm(dim=1, keepdim=True) + 1e-10)

                face_value = torch.cat(
                    [
                        torch.sigmoid(self.model.decode(p_split, c).logits)
                        for p_split in torch.split(face_point.unsqueeze(0), 20000, dim=1)
                    ],
                    dim=1
                )

                normal_target = -autograd.grad([face_value.sum()], [face_point],
                                               create_graph=True)[0]

                normal_target = \
                    normal_target / \
                    (normal_target.norm(dim=1, keepdim=True) + 1e-10)
                loss_target = (face_value - threshold).pow(2).mean()
                loss_normal = \
                    (face_normal - normal_target).pow(2).sum(dim=1).mean()

                loss = loss_target + 0.01 * loss_normal

                # Update
                loss.backward()
                optimizer.step()

                # Update it_r
                it_r += 1

                if it_r >= self.refinement_step:
                    break

        mesh.vertices = v.data.cpu().numpy()
        return mesh