File size: 3,935 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import datetime
import pytz
import traceback
from torchvision.utils import make_grid
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import torch
import json 
import os
from tqdm import tqdm   
import cv2
import imageio
def get_time_for_log():
    return datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime(
        "%Y%m%d %H:%M:%S")


def get_trace_for_log():
    return str(traceback.format_exc())

def make_grid_(imgs, save_file, nrow=10, pad_value=1):
    if isinstance(imgs, list):
        if isinstance(imgs[0], Image.Image):
            imgs = [torch.from_numpy(np.array(img)/255.) for img in imgs]
        elif isinstance(imgs[0], np.ndarray):
            imgs = [torch.from_numpy(img/255.) for img in imgs]
        imgs = torch.stack(imgs, 0).permute(0, 3, 1, 2)
    if isinstance(imgs, np.ndarray):
        imgs = torch.from_numpy(imgs)

    img_grid = make_grid(imgs, nrow=nrow, padding=2, pad_value=pad_value)
    img_grid = img_grid.permute(1, 2, 0).numpy()
    img_grid = (img_grid * 255).astype(np.uint8)
    img_grid = Image.fromarray(img_grid)
    img_grid.save(save_file) 
    
def draw_caption(img, text, pos, size=100, color=(128, 128, 128)):
    draw = ImageDraw.Draw(img)
    # font = ImageFont.truetype(size= size)
    font = ImageFont.load_default()
    font = font.font_variant(size=size)
    draw.text(pos, text, color, font=font)
    return img


def txt2json(txt_file, json_file):  
    with open(txt_file, 'r') as f:
        items = f.readlines()
        items = [x.strip() for x in items]

    with open(json_file, 'w') as f:
        json.dump(items.tolist(), f)
        
def process_thuman_texture():
    path = '/aifs4su/mmcode/lipeng/Thuman2.0'
    cases = os.listdir(path)
    for case in tqdm(cases):
        mtl = os.path.join(path, case, 'material0.mtl')
        with open(mtl, 'r') as f:
            lines = f.read()
            lines = lines.replace('png', 'jpeg')
        with open(mtl, 'w') as f:
            f.write(lines)
        

#### for debug
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"


def get_intrinsic_from_fov(fov, H, W, bs=-1):
    focal_length = 0.5 * H / np.tan(0.5 * fov)
    intrinsic = np.identity(3, dtype=np.float32)
    intrinsic[0, 0] = focal_length
    intrinsic[1, 1] = focal_length
    intrinsic[0, 2] = W / 2.0
    intrinsic[1, 2] = H / 2.0

    if bs > 0:
        intrinsic = intrinsic[None].repeat(bs, axis=0)

    return torch.from_numpy(intrinsic)

def read_data(data_dir, i):
    """

    Return:

    rgb: (H, W, 3) torch.float32

    depth: (H, W, 1) torch.float32

    mask: (H, W, 1) torch.float32

    c2w: (4, 4) torch.float32

    intrinsic: (3, 3) torch.float32

    """
    background_color = torch.tensor([0.0, 0.0, 0.0])

    rgb_name = os.path.join(data_dir, f'render_%04d.webp' % i)
    depth_name = os.path.join(data_dir, f'depth_%04d.exr' % i)
    
    img = torch.from_numpy(
                np.asarray(
                    Image.fromarray(imageio.v2.imread(rgb_name))
                    .convert("RGBA")
                )
                / 255.0
            ).float()
    mask = img[:, :, -1:]
    rgb = img[:, :, :3] * mask + background_color[
        None, None, :
    ] * (1 - mask) 

    depth = torch.from_numpy(
        cv2.imread(depth_name, cv2.IMREAD_UNCHANGED)[..., 0, None]
    )
    mask[depth > 100.0] = 0.0
    depth[~(mask > 0.5)] = 0.0  # set invalid depth to 0

    meta_path = os.path.join(data_dir, 'meta.json')
    with open(meta_path, 'r') as f:
        meta = json.load(f)
    
    c2w = torch.as_tensor(
                meta['locations'][i]["transform_matrix"],
                dtype=torch.float32,
            )

    H, W = rgb.shape[:2]
    fovy = meta["camera_angle_x"]
    intrinsic = get_intrinsic_from_fov(fovy, H=H, W=W)

    return rgb, depth, mask, c2w, intrinsic