File size: 12,071 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

from lib.renderer.mesh import load_scan, compute_tangent, compute_normal, load_obj_mesh_mtl
from lib.dataset.mesh_util import projection
from lib.renderer.gl.prt_render import PRTRender
from lib.renderer.camera import Camera
import os
import cv2
import math
import random
import numpy as np


def render_result(rndr, shader_id, path, mask=False):

    cam_render = rndr.get_color(shader_id)
    cam_render = cv2.cvtColor(cam_render, cv2.COLOR_RGBA2BGRA)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    if shader_id != 2:
        cv2.imwrite(path, np.uint8(255.0 * cam_render))
    else:
        cam_render[:, :, -1] -= 0.5
        cam_render[:, :, -1] *= 2.0
        if not mask:
            cv2.imwrite(path, np.uint8(255.0 / 2.0 * (cam_render + 1.0)))
        else:
            cv2.imwrite(path, np.uint8(-1.0 * cam_render[:, :, [3]]))


def make_rotate(rx, ry, rz):
    sinX = np.sin(rx)
    sinY = np.sin(ry)
    sinZ = np.sin(rz)

    cosX = np.cos(rx)
    cosY = np.cos(ry)
    cosZ = np.cos(rz)

    Rx = np.zeros((3, 3))
    Rx[0, 0] = 1.0
    Rx[1, 1] = cosX
    Rx[1, 2] = -sinX
    Rx[2, 1] = sinX
    Rx[2, 2] = cosX

    Ry = np.zeros((3, 3))
    Ry[0, 0] = cosY
    Ry[0, 2] = sinY
    Ry[1, 1] = 1.0
    Ry[2, 0] = -sinY
    Ry[2, 2] = cosY

    Rz = np.zeros((3, 3))
    Rz[0, 0] = cosZ
    Rz[0, 1] = -sinZ
    Rz[1, 0] = sinZ
    Rz[1, 1] = cosZ
    Rz[2, 2] = 1.0

    R = np.matmul(np.matmul(Rz, Ry), Rx)
    return R


def rotateSH(SH, R):
    SHn = SH

    # 1st order
    SHn[1] = R[1, 1] * SH[1] - R[1, 2] * SH[2] + R[1, 0] * SH[3]
    SHn[2] = -R[2, 1] * SH[1] + R[2, 2] * SH[2] - R[2, 0] * SH[3]
    SHn[3] = R[0, 1] * SH[1] - R[0, 2] * SH[2] + R[0, 0] * SH[3]

    # 2nd order
    SHn[4:, 0] = rotateBand2(SH[4:, 0], R)
    SHn[4:, 1] = rotateBand2(SH[4:, 1], R)
    SHn[4:, 2] = rotateBand2(SH[4:, 2], R)

    return SHn


def rotateBand2(x, R):
    s_c3 = 0.94617469575
    s_c4 = -0.31539156525
    s_c5 = 0.54627421529

    s_c_scale = 1.0 / 0.91529123286551084
    s_c_scale_inv = 0.91529123286551084

    s_rc2 = 1.5853309190550713 * s_c_scale
    s_c4_div_c3 = s_c4 / s_c3
    s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0

    s_scale_dst2 = s_c3 * s_c_scale_inv
    s_scale_dst4 = s_c5 * s_c_scale_inv

    sh0 = x[3] + x[4] + x[4] - x[1]
    sh1 = x[0] + s_rc2 * x[2] + x[3] + x[4]
    sh2 = x[0]
    sh3 = -x[3]
    sh4 = -x[1]

    r2x = R[0][0] + R[0][1]
    r2y = R[1][0] + R[1][1]
    r2z = R[2][0] + R[2][1]

    r3x = R[0][0] + R[0][2]
    r3y = R[1][0] + R[1][2]
    r3z = R[2][0] + R[2][2]

    r4x = R[0][1] + R[0][2]
    r4y = R[1][1] + R[1][2]
    r4z = R[2][1] + R[2][2]

    sh0_x = sh0 * R[0][0]
    sh0_y = sh0 * R[1][0]
    d0 = sh0_x * R[1][0]
    d1 = sh0_y * R[2][0]
    d2 = sh0 * (R[2][0] * R[2][0] + s_c4_div_c3)
    d3 = sh0_x * R[2][0]
    d4 = sh0_x * R[0][0] - sh0_y * R[1][0]

    sh1_x = sh1 * R[0][2]
    sh1_y = sh1 * R[1][2]
    d0 += sh1_x * R[1][2]
    d1 += sh1_y * R[2][2]
    d2 += sh1 * (R[2][2] * R[2][2] + s_c4_div_c3)
    d3 += sh1_x * R[2][2]
    d4 += sh1_x * R[0][2] - sh1_y * R[1][2]

    sh2_x = sh2 * r2x
    sh2_y = sh2 * r2y
    d0 += sh2_x * r2y
    d1 += sh2_y * r2z
    d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2)
    d3 += sh2_x * r2z
    d4 += sh2_x * r2x - sh2_y * r2y

    sh3_x = sh3 * r3x
    sh3_y = sh3 * r3y
    d0 += sh3_x * r3y
    d1 += sh3_y * r3z
    d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2)
    d3 += sh3_x * r3z
    d4 += sh3_x * r3x - sh3_y * r3y

    sh4_x = sh4 * r4x
    sh4_y = sh4 * r4y
    d0 += sh4_x * r4y
    d1 += sh4_y * r4z
    d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2)
    d3 += sh4_x * r4z
    d4 += sh4_x * r4x - sh4_y * r4y

    dst = x
    dst[0] = d0
    dst[1] = -d1
    dst[2] = d2 * s_scale_dst2
    dst[3] = -d3
    dst[4] = d4 * s_scale_dst4

    return dst


def load_calib(param, render_size=512):
    # pixel unit / world unit
    ortho_ratio = param['ortho_ratio']
    # world unit / model unit
    scale = param['scale']
    # camera center world coordinate
    center = param['center']
    # model rotation
    R = param['R']

    translate = -np.matmul(R, center).reshape(3, 1)
    extrinsic = np.concatenate([R, translate], axis=1)
    extrinsic = np.concatenate(
        [extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0)
    # Match camera space to image pixel space
    scale_intrinsic = np.identity(4)
    scale_intrinsic[0, 0] = scale / ortho_ratio
    scale_intrinsic[1, 1] = -scale / ortho_ratio
    scale_intrinsic[2, 2] = scale / ortho_ratio
    # Match image pixel space to image uv space
    uv_intrinsic = np.identity(4)
    uv_intrinsic[0, 0] = 1.0 / float(render_size // 2)
    uv_intrinsic[1, 1] = 1.0 / float(render_size // 2)
    uv_intrinsic[2, 2] = 1.0 / float(render_size // 2)

    intrinsic = np.matmul(uv_intrinsic, scale_intrinsic)
    calib = np.concatenate([extrinsic, intrinsic], axis=0)
    return calib


def render_prt_ortho(out_path,
                     folder_name,
                     subject_name,
                     shs,
                     rndr,
                     rndr_uv,
                     im_size,
                     angl_step=4,
                     n_light=1,
                     pitch=[0]):
    cam = Camera(width=im_size, height=im_size)
    cam.ortho_ratio = 0.4 * (512 / im_size)
    cam.near = -100
    cam.far = 100
    cam.sanity_check()

    # set path for obj, prt
    mesh_file = os.path.join(folder_name, subject_name + '_100k.obj')
    if not os.path.exists(mesh_file):
        print('ERROR: obj file does not exist!!', mesh_file)
        return
    prt_file = os.path.join(folder_name, 'bounce', 'bounce0.txt')
    if not os.path.exists(prt_file):
        print('ERROR: prt file does not exist!!!', prt_file)
        return
    face_prt_file = os.path.join(folder_name, 'bounce', 'face.npy')
    if not os.path.exists(face_prt_file):
        print('ERROR: face prt file does not exist!!!', prt_file)
        return
    text_file = os.path.join(folder_name, 'tex', subject_name + '_dif_2k.jpg')
    if not os.path.exists(text_file):
        print('ERROR: dif file does not exist!!', text_file)
        return

    texture_image = cv2.imread(text_file)
    texture_image = cv2.cvtColor(texture_image, cv2.COLOR_BGR2RGB)

    vertices, faces, normals, faces_normals, textures, face_textures = load_scan(
        mesh_file, with_normal=True, with_texture=True)
    vmin = vertices.min(0)
    vmax = vertices.max(0)
    up_axis = 1 if (vmax - vmin).argmax() == 1 else 2

    vmed = np.median(vertices, 0)
    vmed[up_axis] = 0.5 * (vmax[up_axis] + vmin[up_axis])
    y_scale = 180 / (vmax[up_axis] - vmin[up_axis])

    rndr.set_norm_mat(y_scale, vmed)
    rndr_uv.set_norm_mat(y_scale, vmed)

    tan, bitan = compute_tangent(vertices, faces, normals, textures,
                                 face_textures)
    prt = np.loadtxt(prt_file)
    face_prt = np.load(face_prt_file)
    rndr.set_mesh(vertices, faces, normals, faces_normals, textures,
                  face_textures, prt, face_prt, tan, bitan)
    rndr.set_albedo(texture_image)

    rndr_uv.set_mesh(vertices, faces, normals, faces_normals, textures,
                     face_textures, prt, face_prt, tan, bitan)
    rndr_uv.set_albedo(texture_image)

    os.makedirs(os.path.join(out_path, 'GEO', 'OBJ', subject_name),
                exist_ok=True)
    os.makedirs(os.path.join(out_path, 'PARAM', subject_name), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'RENDER', subject_name), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'MASK', subject_name), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'UV_RENDER', subject_name),
                exist_ok=True)
    os.makedirs(os.path.join(out_path, 'UV_MASK', subject_name), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'UV_POS', subject_name), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'UV_NORMAL', subject_name),
                exist_ok=True)

    if not os.path.exists(os.path.join(out_path, 'val.txt')):
        f = open(os.path.join(out_path, 'val.txt'), 'w')
        f.close()

    # copy obj file
    cmd = 'cp %s %s' % (mesh_file,
                        os.path.join(out_path, 'GEO', 'OBJ', subject_name))
    print(cmd)
    os.system(cmd)

    for p in pitch:
        for y in tqdm(range(0, 360, angl_step)):
            R = np.matmul(make_rotate(math.radians(p), 0, 0),
                          make_rotate(0, math.radians(y), 0))
            if up_axis == 2:
                R = np.matmul(R, make_rotate(math.radians(90), 0, 0))

            rndr.rot_matrix = R
            rndr_uv.rot_matrix = R
            rndr.set_camera(cam)
            rndr_uv.set_camera(cam)

            for j in range(n_light):
                sh_id = random.randint(0, shs.shape[0] - 1)
                sh = shs[sh_id]
                sh_angle = 0.2 * np.pi * (random.random() - 0.5)
                sh = rotateSH(sh, make_rotate(0, sh_angle, 0).T)

                dic = {
                    'sh': sh,
                    'ortho_ratio': cam.ortho_ratio,
                    'scale': y_scale,
                    'center': vmed,
                    'R': R
                }

                rndr.set_sh(sh)
                rndr.analytic = False
                rndr.use_inverse_depth = False
                rndr.display()

                out_all_f = rndr.get_color(0)
                out_mask = out_all_f[:, :, 3]
                out_all_f = cv2.cvtColor(out_all_f, cv2.COLOR_RGBA2BGR)

                np.save(
                    os.path.join(out_path, 'PARAM', subject_name,
                                 '%d_%d_%02d.npy' % (y, p, j)), dic)
                cv2.imwrite(
                    os.path.join(out_path, 'RENDER', subject_name,
                                 '%d_%d_%02d.jpg' % (y, p, j)),
                    255.0 * out_all_f)
                cv2.imwrite(
                    os.path.join(out_path, 'MASK', subject_name,
                                 '%d_%d_%02d.png' % (y, p, j)),
                    255.0 * out_mask)

                rndr_uv.set_sh(sh)
                rndr_uv.analytic = False
                rndr_uv.use_inverse_depth = False
                rndr_uv.display()

                uv_color = rndr_uv.get_color(0)
                uv_color = cv2.cvtColor(uv_color, cv2.COLOR_RGBA2BGR)
                cv2.imwrite(
                    os.path.join(out_path, 'UV_RENDER', subject_name,
                                 '%d_%d_%02d.jpg' % (y, p, j)),
                    255.0 * uv_color)

                if y == 0 and j == 0 and p == pitch[0]:
                    uv_pos = rndr_uv.get_color(1)
                    uv_mask = uv_pos[:, :, 3]
                    cv2.imwrite(
                        os.path.join(out_path, 'UV_MASK', subject_name,
                                     '00.png'), 255.0 * uv_mask)

                    data = {
                        'default': uv_pos[:, :, :3]
                    }  # default is a reserved name
                    pyexr.write(
                        os.path.join(out_path, 'UV_POS', subject_name,
                                     '00.exr'), data)

                    uv_nml = rndr_uv.get_color(2)
                    uv_nml = cv2.cvtColor(uv_nml, cv2.COLOR_RGBA2BGR)
                    cv2.imwrite(
                        os.path.join(out_path, 'UV_NORMAL', subject_name,
                                     '00.png'), 255.0 * uv_nml)