Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,864 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
import trimesh
import numpy as np
import math
from scipy.special import sph_harm
import argparse
from tqdm import tqdm
from trimesh.util import bounds_tree
def factratio(N, D):
if N >= D:
prod = 1.0
for i in range(D + 1, N + 1):
prod *= i
return prod
else:
prod = 1.0
for i in range(N + 1, D + 1):
prod *= i
return 1.0 / prod
def KVal(M, L):
return math.sqrt(((2 * L + 1) / (4 * math.pi)) * (factratio(L - M, L + M)))
def AssociatedLegendre(M, L, x):
if M < 0 or M > L or np.max(np.abs(x)) > 1.0:
return np.zeros_like(x)
pmm = np.ones_like(x)
if M > 0:
somx2 = np.sqrt((1.0 + x) * (1.0 - x))
fact = 1.0
for i in range(1, M + 1):
pmm = -pmm * fact * somx2
fact = fact + 2
if L == M:
return pmm
else:
pmmp1 = x * (2 * M + 1) * pmm
if L == M + 1:
return pmmp1
else:
pll = np.zeros_like(x)
for i in range(M + 2, L + 1):
pll = (x * (2 * i - 1) * pmmp1 - (i + M - 1) * pmm) / (i - M)
pmm = pmmp1
pmmp1 = pll
return pll
def SphericalHarmonic(M, L, theta, phi):
if M > 0:
return math.sqrt(2.0) * KVal(M, L) * np.cos(
M * phi) * AssociatedLegendre(M, L, np.cos(theta))
elif M < 0:
return math.sqrt(2.0) * KVal(-M, L) * np.sin(
-M * phi) * AssociatedLegendre(-M, L, np.cos(theta))
else:
return KVal(0, L) * AssociatedLegendre(0, L, np.cos(theta))
def save_obj(mesh_path, verts):
file = open(mesh_path, 'w')
for v in verts:
file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2]))
file.close()
def sampleSphericalDirections(n):
xv = np.random.rand(n, n)
yv = np.random.rand(n, n)
theta = np.arccos(1 - 2 * xv)
phi = 2.0 * math.pi * yv
phi = phi.reshape(-1)
theta = theta.reshape(-1)
vx = -np.sin(theta) * np.cos(phi)
vy = -np.sin(theta) * np.sin(phi)
vz = np.cos(theta)
return np.stack([vx, vy, vz], 1), phi, theta
def getSHCoeffs(order, phi, theta):
shs = []
for n in range(0, order + 1):
for m in range(-n, n + 1):
s = SphericalHarmonic(m, n, theta, phi)
shs.append(s)
return np.stack(shs, 1)
def computePRT(mesh_path, scale, n, order):
prt_dir = os.path.join(os.path.dirname(mesh_path), "prt")
bounce_path = os.path.join(prt_dir, "bounce.npy")
face_path = os.path.join(prt_dir, "face.npy")
os.makedirs(prt_dir, exist_ok=True)
PRT = None
F = None
if os.path.exists(bounce_path) and os.path.exists(face_path):
PRT = np.load(bounce_path)
F = np.load(face_path)
else:
mesh = trimesh.load(mesh_path,
skip_materials=True,
process=False,
maintain_order=True)
mesh.vertices *= scale
vectors_orig, phi, theta = sampleSphericalDirections(n)
SH_orig = getSHCoeffs(order, phi, theta)
w = 4.0 * math.pi / (n * n)
origins = mesh.vertices
normals = mesh.vertex_normals
n_v = origins.shape[0]
origins = np.repeat(origins[:, None], n, axis=1).reshape(-1, 3)
normals = np.repeat(normals[:, None], n, axis=1).reshape(-1, 3)
PRT_all = None
for i in range(n):
SH = np.repeat(SH_orig[None, (i * n):((i + 1) * n)], n_v,
axis=0).reshape(-1, SH_orig.shape[1])
vectors = np.repeat(vectors_orig[None, (i * n):((i + 1) * n)],
n_v,
axis=0).reshape(-1, 3)
dots = (vectors * normals).sum(1)
front = (dots > 0.0)
delta = 1e-3 * min(mesh.bounding_box.extents)
hits = mesh.ray.intersects_any(origins + delta * normals, vectors)
nohits = np.logical_and(front, np.logical_not(hits))
PRT = (nohits.astype(np.float32) * dots)[:, None] * SH
if PRT_all is not None:
PRT_all += (PRT.reshape(-1, n, SH.shape[1]).sum(1))
else:
PRT_all = (PRT.reshape(-1, n, SH.shape[1]).sum(1))
PRT = w * PRT_all
F = mesh.faces
np.save(bounce_path, PRT)
np.save(face_path, F)
# NOTE: trimesh sometimes break the original vertex order, but topology will not change.
# when loading PRT in other program, use the triangle list from trimesh.
return PRT, F
def testPRT(obj_path, n=40):
os.makedirs(os.path.join(os.path.dirname(obj_path),
f'../bounce/{os.path.basename(obj_path)[:-4]}'),
exist_ok=True)
PRT, F = computePRT(obj_path, n, 2)
np.savetxt(
os.path.join(os.path.dirname(obj_path),
f'../bounce/{os.path.basename(obj_path)[:-4]}',
'bounce.npy'), PRT)
np.save(
os.path.join(os.path.dirname(obj_path),
f'../bounce/{os.path.basename(obj_path)[:-4]}',
'face.npy'), F)
|