Spaces:
Running
on
L40S
Running
on
L40S
File size: 15,169 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import numpy as np
import torch
from torch.utils.data import Dataset
from PIL import Image
from typing import Tuple, Optional
import cv2
import random
import os
import PIL
from icecream import ic
def add_margin(pil_img, color=0, size=256):
width, height = pil_img.size
result = Image.new(pil_img.mode, (size, size), color)
result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
return result
def scale_and_place_object(image, scale_factor):
assert np.shape(image)[-1]==4 # RGBA
# Extract the alpha channel (transparency) and the object (RGB channels)
alpha_channel = image[:, :, 3]
# Find the bounding box coordinates of the object
coords = cv2.findNonZero(alpha_channel)
x, y, width, height = cv2.boundingRect(coords)
# Calculate the scale factor for resizing
original_height, original_width = image.shape[:2]
if width > height:
size = width
original_size = original_width
else:
size = height
original_size = original_height
scale_factor = min(scale_factor, size / (original_size+0.0))
new_size = scale_factor * original_size
scale_factor = new_size / size
# Calculate the new size based on the scale factor
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
center_x = original_width // 2
center_y = original_height // 2
paste_x = center_x - (new_width // 2)
paste_y = center_y - (new_height // 2)
# Resize the object (RGB channels) to the new size
rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height))
# Create a new RGBA image with the resized image
new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8)
new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object
return new_image
class SingleImageDataset(Dataset):
def __init__(self,
root_dir: str,
num_views: int,
img_wh: Tuple[int, int],
bg_color: str,
margin_size: int = 0,
single_image: Optional[PIL.Image.Image] = None,
num_validation_samples: Optional[int] = None,
filepaths: Optional[list] = None,
cond_type: Optional[str] = None,
prompt_embeds_path: Optional[str] = None,
gt_path: Optional[str] = None,
crop_size: Optional[int] = 720,
smpl_folder: Optional[str] = 'smpl_image_pymaf',
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = root_dir
self.num_views = num_views
self.img_wh = img_wh
self.margin_size = margin_size
self.bg_color = bg_color
self.cond_type = cond_type
self.gt_path = gt_path
self.crop_size = crop_size
self.smpl_folder = smpl_folder
if single_image is None:
if filepaths is None:
# Get a list of all files in the directory
file_list = os.listdir(self.root_dir)
else:
file_list = filepaths
# Filter the files that end with .png or .jpg
self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg', '.webp'))]
else:
self.file_list = [single_image]
ic(len(self.file_list))
try:
normal_prompt_embedding = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
color_prompt_embedding = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
if self.num_views == 7:
self.normal_text_embeds = normal_prompt_embedding
self.color_text_embeds = color_prompt_embedding
elif self.num_views == 5:
self.normal_text_embeds = torch.stack([normal_prompt_embedding[0], normal_prompt_embedding[2], normal_prompt_embedding[3], normal_prompt_embedding[4], normal_prompt_embedding[6]] , 0)
self.color_text_embeds = torch.stack([color_prompt_embedding[0], color_prompt_embedding[2], color_prompt_embedding[3], color_prompt_embedding[4], color_prompt_embedding[6]] , 0)
except:
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/embeds.pt')
self.normal_text_embeds = None
def __len__(self):
return len(self.file_list)
def get_face_info(self, file):
file_name = file.split('.')[0]
face_info = np.load(f'{self.root_dir}/{file_name}_face_info.npy', allow_pickle=True).item()
return face_info
def get_bg_color(self):
if self.bg_color == 'white':
bg_color = np.array([1., 1., 1.], dtype=np.float32)
elif self.bg_color == 'black':
bg_color = np.array([0., 0., 0.], dtype=np.float32)
elif self.bg_color == 'gray':
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
elif self.bg_color == 'random':
bg_color = np.random.rand(3)
elif isinstance(self.bg_color, float):
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
else:
raise NotImplementedError
return bg_color
def load_smpl_images(self, smpl_path, bg_color, return_type='np'):
if self.num_views - 1 == 4:
_views = [0, 2, 4, 6]
flip_views = [4, 6]
elif self.num_views - 1 == 6:
_views = [0, 1, 2, 4, 6, 7]
flip_views = [4, 6]
elif self.num_views - 1 == 8:
_views = [0, 1, 2, 3, 4, 5, 6, 7]
flip_views = [4, 5, 6, 7]
imgs = []
alphas = []
for i in _views:
smpl_image = Image.open(os.path.join(smpl_path, f'{i:03d}.png'))
if i == 0:
assert smpl_image.size[0] == self.img_wh[0]
smpl_alpha = np.asarray(smpl_image)[...,3]
coords = np.stack(np.nonzero(smpl_alpha), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
crop_size = max(max_x - min_x, max_y - min_y) + self.margin_size
# print(crop_size)
smpl_image = np.asarray(smpl_image).astype(np.float32) / 255. # [0, 1]
alpha = smpl_image[...,3:4]
img = smpl_image[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
alpha = torch.from_numpy(alpha)
else:
raise NotImplementedError
if i in flip_views:
img = torch.flip(img, [1])
alpha = torch.flip(alpha, [1])
imgs.append(img)
alphas.append(alpha)
return imgs, crop_size, alphas
def load_image(self, img_path, bg_color, crop_size, return_type='np', Imagefile=None):
# pil always returns uint8
if Imagefile is None:
image_input = Image.open(img_path)
else:
image_input = Imagefile
image_size = self.img_wh[0]
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_))
image_input = add_margin(ref_img_, size=image_size)
# img = scale_and_place_object(img, self.scale_ratio)
img = np.array(image_input)
img = img.astype(np.float32) / 255. # [0, 1]
assert img.shape[-1] == 4 # RGBA
alpha = img[...,3:4]
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
alpha = torch.from_numpy(alpha)
else:
raise NotImplementedError
return img, alpha
def load_face(self, img_path, bg_color, return_type='np', crop_size=-1):
image_input = Image.open(img_path)
image_size = self.img_wh[0]
if crop_size > 0: # color image
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_))
image_input = add_margin(ref_img_, size=image_size)
image_input = image_input.crop((256, 0, 512, 256)).resize((self.img_wh[0], self.img_wh[1]))
# img = scale_and_place_object(img, self.scale_ratio)
img = np.array(image_input)
img = img.astype(np.float32) / 255. # [0, 1]
assert img.shape[-1] == 4 # RGBA
alpha = img[...,3:4]
img = img[...,:3] * alpha + bg_color * (1 - alpha)
if return_type == "np":
pass
elif return_type == "pt":
img = torch.from_numpy(img)
alpha = torch.from_numpy(alpha)
else:
raise NotImplementedError
return img
def process_face(self, img_path, bbox, bg_color, normal_path=None, w2c=None, h=512, w=512):
image = Image.open(img_path)
bbox_w, bbox_h = bbox[2] - bbox[0], bbox[3] - bbox[1]
if bbox_w > bbox_h:
bbox[1] -= (bbox_w - bbox_h) // 2
bbox[3] += (bbox_w - bbox_h) // 2
else:
bbox[0] -= (bbox_h - bbox_w) // 2
bbox[2] += (bbox_h - bbox_w) // 2
bbox[0:2] -= 20
bbox[2:4] += 20
image = image.crop(bbox)
image = image.resize((w, h))
image = np.array(image) / 255.
img, alpha = image[:, :, :3], image[:, :, 3:4]
img = img * alpha + bg_color * (1 - alpha)
padded_img = np.full((self.img_wh[0], self.img_wh[1], 3), bg_color, dtype=np.float32)
dx = (self.img_wh[0] - w) // 2
dy = (self.img_wh[1] - h) // 2
padded_img[dy:dy+h, dx:dx+w] = img
padded_img = torch.from_numpy(padded_img).permute(2,0,1)
return padded_img
def __getitem__(self, index):
filename = self.file_list[index].split('.')[0]
bg_color = self.get_bg_color()
smpl_images, crop_size, smpl_alphas = self.load_smpl_images(f'{self.root_dir}/{self.smpl_folder}/{filename}', bg_color, return_type='pt')
smpl_face = self.load_face(f'{self.root_dir}/{self.smpl_folder}/{filename}/000.png', bg_color, return_type='pt')
image, _ = self.load_image(f'{self.root_dir}/{self.file_list[index]}', bg_color, crop_size, return_type='pt') # m
face = self.load_face(f'{self.root_dir}/{self.file_list[index]}', bg_color, return_type='pt', crop_size=crop_size) # m
img_tensors_in = [ image.permute(2, 0, 1) ] * (self.num_views-1) + [ face.permute(2, 0, 1)]
smpl_tensors_in = [ tmp.permute(2, 0, 1) for tmp in smpl_images ] + [ smpl_face.permute(2, 0, 1) ]
smpl_alphas = [ tmp.permute(2, 0, 1) for tmp in smpl_alphas ]
# import pdb; pdb.set_trace()
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
smpl_tensors_in = torch.stack(smpl_tensors_in, dim=0).float() # (Nv, 3, H, W)
smpl_alphas = torch.stack(smpl_alphas, dim=0).float() # (Nv, 1, H, W)
normal_prompt_embeddings = self.normal_text_embeds if hasattr(self, 'normal_text_embeds') else None
color_prompt_embeddings = self.color_text_embeds if hasattr(self, 'color_text_embeds') else None
if normal_prompt_embeddings is None:
out = {
'imgs_in': img_tensors_in,
'smpl_imgs_in': smpl_tensors_in,
'smpl_alphas': smpl_alphas,
'color_prompt_embeddings': color_prompt_embeddings,
'filename': filename,
}
else:
out = {
'imgs_in': img_tensors_in,
'smpl_imgs_in': smpl_tensors_in,
'smpl_alphas': smpl_alphas,
'normal_prompt_embeddings': normal_prompt_embeddings,
'color_prompt_embeddings': color_prompt_embeddings,
'filename': filename,
}
return out
if __name__ == "__main__":
# pass
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from PIL import ImageDraw, ImageFont
def draw_text(img, text, pos, color=(128, 128, 128)):
draw = ImageDraw.Draw(img)
# font = ImageFont.truetype(size= size)
font = ImageFont.load_default()
font = font.font_variant(size=10)
draw.text(pos, text, color, font=font)
return img
random.seed(11)
test_params = dict(
root_dir='../../examples/CAPE',
bg_color='white',
img_wh=(768, 768),
prompt_embeds_path='fixed_prompt_embeds_7view',
num_views=7,
# crop_size=740,
margin_size=15,
smpl_folder='gt_smpl_image',
)
train_dataset = SingleImageDataset(**test_params)
data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0)
for batch in data_loader:
# batch = train_dataset.__getitem__(1)
imgs = []
obj_name = batch['filename'][0]
imgs_in = batch['imgs_in'][0]
imgs_smpl_in = batch['smpl_imgs_in'][0]
alphas_smpl = batch['smpl_alphas'][0]
img0 = (imgs_in[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8)
img1 = (imgs_smpl_in[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8)
print(img0.shape, img1.shape)
smpl_alpha = alphas_smpl[0].permute(1, 2, 0).repeat(1, 1, 3).numpy()
img0[smpl_alpha > 0.5] = img1[smpl_alpha > 0.5]
Image.fromarray(img0).save(f'../../debug/{obj_name}_rgb.png')
# Image.fromarray(img1).save(f'../../debug/{obj_name}_smpl.png')
exit()
imgs_vis = torch.cat([imgs_in, imgs_smpl_in], 0)
img_vis = make_grid(imgs_vis, nrow=4).permute(1, 2,0)
img_vis = (img_vis.numpy() * 255).astype(np.uint8)
img_vis = Image.fromarray(img_vis)
img_vis = draw_text(img_vis, obj_name, (5, 1))
img_vis = torch.from_numpy(np.array(img_vis)).permute(2, 0, 1) / 255.
imgs.append(img_vis)
imgs = torch.stack(imgs, dim=0)
img_grid = make_grid(imgs, nrow=4, padding=0)
img_grid = img_grid.permute(1, 2, 0).numpy()
img_grid = (img_grid * 255).astype(np.uint8)
img_grid = Image.fromarray(img_grid)
img_grid.save(f'../../debug/{obj_name}.png')
print('finished.')
|