Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as tfunc | |
import torch_scatter | |
def prepend_dummies( | |
vertices:torch.Tensor, #V,D | |
faces:torch.Tensor, #F,3 long | |
)->tuple[torch.Tensor,torch.Tensor]: | |
"""prepend dummy elements to vertices and faces to enable "masked" scatter operations""" | |
V,D = vertices.shape | |
vertices = torch.concat((torch.full((1,D),fill_value=torch.nan,device=vertices.device),vertices),dim=0) | |
faces = torch.concat((torch.zeros((1,3),dtype=torch.long,device=faces.device),faces+1),dim=0) | |
return vertices,faces | |
def remove_dummies( | |
vertices:torch.Tensor, #V,D - first vertex all nan and unreferenced | |
faces:torch.Tensor, #F,3 long - first face all zeros | |
)->tuple[torch.Tensor,torch.Tensor]: | |
"""remove dummy elements added with prepend_dummies()""" | |
return vertices[1:],faces[1:]-1 | |
def calc_edges( | |
faces: torch.Tensor, # F,3 long - first face may be dummy with all zeros | |
with_edge_to_face: bool = False | |
) -> tuple[torch.Tensor, ...]: | |
""" | |
returns tuple of | |
- edges E,2 long, 0 for unused, lower vertex index first | |
- face_to_edge F,3 long | |
- (optional) edge_to_face shape=E,[left,right],[face,side] | |
o-<-----e1 e0,e1...edge, e0<e1 | |
| /A L,R....left and right face | |
| L / | both triangles ordered counter clockwise | |
| / R | normals pointing out of screen | |
V/ | | |
e0---->-o | |
""" | |
F = faces.shape[0] | |
# make full edges, lower vertex index first | |
face_edges = torch.stack((faces,faces.roll(-1,1)),dim=-1) #F*3,3,2 | |
full_edges = face_edges.reshape(F*3,2) | |
sorted_edges,_ = full_edges.sort(dim=-1) #F*3,2 TODO min/max faster? | |
# make unique edges | |
edges,full_to_unique = torch.unique(input=sorted_edges,sorted=True,return_inverse=True,dim=0) #(E,2),(F*3) | |
E = edges.shape[0] | |
face_to_edge = full_to_unique.reshape(F,3) #F,3 | |
if not with_edge_to_face: | |
return edges, face_to_edge | |
is_right = full_edges[:,0]!=sorted_edges[:,0] #F*3 | |
edge_to_face = torch.zeros((E,2,2),dtype=torch.long,device=faces.device) #E,LR=2,S=2 | |
scatter_src = torch.cartesian_prod(torch.arange(0,F,device=faces.device),torch.arange(0,3,device=faces.device)) #F*3,2 | |
edge_to_face.reshape(2*E,2).scatter_(dim=0,index=(2*full_to_unique+is_right)[:,None].expand(F*3,2),src=scatter_src) #E,LR=2,S=2 | |
edge_to_face[0] = 0 | |
return edges, face_to_edge, edge_to_face | |
def calc_edge_length( | |
vertices:torch.Tensor, #V,3 first may be dummy | |
edges:torch.Tensor, #E,2 long, lower vertex index first, (0,0) for unused | |
)->torch.Tensor: #E | |
full_vertices = vertices[edges] #E,2,3 | |
a,b = full_vertices.unbind(dim=1) #E,3 | |
return torch.norm(a-b,p=2,dim=-1) | |
def calc_face_normals( | |
vertices:torch.Tensor, #V,3 first vertex may be unreferenced | |
faces:torch.Tensor, #F,3 long, first face may be all zero | |
normalize:bool=False, | |
)->torch.Tensor: #F,3 | |
""" | |
n | |
| | |
c0 corners ordered counterclockwise when | |
/ \ looking onto surface (in neg normal direction) | |
c1---c2 | |
""" | |
full_vertices = vertices[faces] #F,C=3,3 | |
v0,v1,v2 = full_vertices.unbind(dim=1) #F,3 | |
face_normals = torch.cross(v1-v0,v2-v0, dim=1) #F,3 | |
if normalize: | |
face_normals = tfunc.normalize(face_normals, eps=1e-6, dim=1) #TODO inplace? | |
return face_normals #F,3 | |
def calc_vertex_normals( | |
vertices:torch.Tensor, #V,3 first vertex may be unreferenced | |
faces:torch.Tensor, #F,3 long, first face may be all zero | |
face_normals:torch.Tensor=None, #F,3, not normalized | |
)->torch.Tensor: #F,3 | |
F = faces.shape[0] | |
if face_normals is None: | |
face_normals = calc_face_normals(vertices,faces) | |
vertex_normals = torch.zeros((vertices.shape[0],3,3),dtype=vertices.dtype,device=vertices.device) #V,C=3,3 | |
vertex_normals.scatter_add_(dim=0,index=faces[:,:,None].expand(F,3,3),src=face_normals[:,None,:].expand(F,3,3)) | |
vertex_normals = vertex_normals.sum(dim=1) #V,3 | |
return tfunc.normalize(vertex_normals, eps=1e-6, dim=1) | |
def calc_face_ref_normals( | |
faces:torch.Tensor, #F,3 long, 0 for unused | |
vertex_normals:torch.Tensor, #V,3 first unused | |
normalize:bool=False, | |
)->torch.Tensor: #F,3 | |
"""calculate reference normals for face flip detection""" | |
full_normals = vertex_normals[faces] #F,C=3,3 | |
ref_normals = full_normals.sum(dim=1) #F,3 | |
if normalize: | |
ref_normals = tfunc.normalize(ref_normals, eps=1e-6, dim=1) | |
return ref_normals | |
def pack( | |
vertices:torch.Tensor, #V,3 first unused and nan | |
faces:torch.Tensor, #F,3 long, 0 for unused | |
)->tuple[torch.Tensor,torch.Tensor]: #(vertices,faces), keeps first vertex unused | |
"""removes unused elements in vertices and faces""" | |
V = vertices.shape[0] | |
# remove unused faces | |
used_faces = faces[:,0]!=0 | |
used_faces[0] = True | |
faces = faces[used_faces] #sync | |
# remove unused vertices | |
used_vertices = torch.zeros(V,3,dtype=torch.bool,device=vertices.device) | |
used_vertices.scatter_(dim=0,index=faces,value=True,reduce='add') #TODO int faster? | |
used_vertices = used_vertices.any(dim=1) | |
used_vertices[0] = True | |
vertices = vertices[used_vertices] #sync | |
# update used faces | |
ind = torch.zeros(V,dtype=torch.long,device=vertices.device) | |
V1 = used_vertices.sum() | |
ind[used_vertices] = torch.arange(0,V1,device=vertices.device) #sync | |
faces = ind[faces] | |
return vertices,faces | |
def split_edges( | |
vertices:torch.Tensor, #V,3 first unused | |
faces:torch.Tensor, #F,3 long, 0 for unused | |
edges:torch.Tensor, #E,2 long 0 for unused, lower vertex index first | |
face_to_edge:torch.Tensor, #F,3 long 0 for unused | |
splits, #E bool | |
pack_faces:bool=True, | |
)->tuple[torch.Tensor,torch.Tensor]: #(vertices,faces) | |
# c2 c2 c...corners = faces | |
# . . . . s...side_vert, 0 means no split | |
# . . .N2 . S...shrunk_face | |
# . . . . Ni...new_faces | |
# s2 s1 s2|c2...s1|c1 | |
# . . . . . | |
# . . . S . . | |
# . . . . N1 . | |
# c0...(s0=0)....c1 s0|c0...........c1 | |
# | |
# pseudo-code: | |
# S = [s0|c0,s1|c1,s2|c2] example:[c0,s1,s2] | |
# split = side_vert!=0 example:[False,True,True] | |
# N0 = split[0]*[c0,s0,s2|c2] example:[0,0,0] | |
# N1 = split[1]*[c1,s1,s0|c0] example:[c1,s1,c0] | |
# N2 = split[2]*[c2,s2,s1|c1] example:[c2,s2,s1] | |
V = vertices.shape[0] | |
F = faces.shape[0] | |
S = splits.sum().item() #sync | |
if S==0: | |
return vertices,faces | |
edge_vert = torch.zeros_like(splits, dtype=torch.long) #E | |
edge_vert[splits] = torch.arange(V,V+S,dtype=torch.long,device=vertices.device) #E 0 for no split, sync | |
side_vert = edge_vert[face_to_edge] #F,3 long, 0 for no split | |
split_edges = edges[splits] #S sync | |
#vertices | |
split_vertices = vertices[split_edges].mean(dim=1) #S,3 | |
vertices = torch.concat((vertices,split_vertices),dim=0) | |
#faces | |
side_split = side_vert!=0 #F,3 | |
shrunk_faces = torch.where(side_split,side_vert,faces) #F,3 long, 0 for no split | |
new_faces = side_split[:,:,None] * torch.stack((faces,side_vert,shrunk_faces.roll(1,dims=-1)),dim=-1) #F,N=3,C=3 | |
faces = torch.concat((shrunk_faces,new_faces.reshape(F*3,3))) #4F,3 | |
if pack_faces: | |
mask = faces[:,0]!=0 | |
mask[0] = True | |
faces = faces[mask] #F',3 sync | |
return vertices,faces | |
def collapse_edges( | |
vertices:torch.Tensor, #V,3 first unused | |
faces:torch.Tensor, #F,3 long 0 for unused | |
edges:torch.Tensor, #E,2 long 0 for unused, lower vertex index first | |
priorities:torch.Tensor, #E float | |
stable:bool=False, #only for unit testing | |
)->tuple[torch.Tensor,torch.Tensor]: #(vertices,faces) | |
V = vertices.shape[0] | |
# check spacing | |
_,order = priorities.sort(stable=stable) #E | |
rank = torch.zeros_like(order) | |
rank[order] = torch.arange(0,len(rank),device=rank.device) | |
vert_rank = torch.zeros(V,dtype=torch.long,device=vertices.device) #V | |
edge_rank = rank #E | |
for i in range(3): | |
torch_scatter.scatter_max(src=edge_rank[:,None].expand(-1,2).reshape(-1),index=edges.reshape(-1),dim=0,out=vert_rank) | |
edge_rank,_ = vert_rank[edges].max(dim=-1) #E | |
candidates = edges[(edge_rank==rank).logical_and_(priorities>0)] #E',2 | |
# check connectivity | |
vert_connections = torch.zeros(V,dtype=torch.long,device=vertices.device) #V | |
vert_connections[candidates[:,0]] = 1 #start | |
edge_connections = vert_connections[edges].sum(dim=-1) #E, edge connected to start | |
vert_connections.scatter_add_(dim=0,index=edges.reshape(-1),src=edge_connections[:,None].expand(-1,2).reshape(-1))# one edge from start | |
vert_connections[candidates] = 0 #clear start and end | |
edge_connections = vert_connections[edges].sum(dim=-1) #E, one or two edges from start | |
vert_connections.scatter_add_(dim=0,index=edges.reshape(-1),src=edge_connections[:,None].expand(-1,2).reshape(-1)) #one or two edges from start | |
collapses = candidates[vert_connections[candidates[:,1]] <= 2] # E" not more than two connections between start and end | |
# mean vertices | |
vertices[collapses[:,0]] = vertices[collapses].mean(dim=1) #TODO dim? | |
# update faces | |
dest = torch.arange(0,V,dtype=torch.long,device=vertices.device) #V | |
dest[collapses[:,1]] = dest[collapses[:,0]] | |
faces = dest[faces] #F,3 TODO optimize? | |
c0,c1,c2 = faces.unbind(dim=-1) | |
collapsed = (c0==c1).logical_or_(c1==c2).logical_or_(c0==c2) | |
faces[collapsed] = 0 | |
return vertices,faces | |
def calc_face_collapses( | |
vertices:torch.Tensor, #V,3 first unused | |
faces:torch.Tensor, #F,3 long, 0 for unused | |
edges:torch.Tensor, #E,2 long 0 for unused, lower vertex index first | |
face_to_edge:torch.Tensor, #F,3 long 0 for unused | |
edge_length:torch.Tensor, #E | |
face_normals:torch.Tensor, #F,3 | |
vertex_normals:torch.Tensor, #V,3 first unused | |
min_edge_length:torch.Tensor=None, #V | |
area_ratio = 0.5, #collapse if area < min_edge_length**2 * area_ratio | |
shortest_probability = 0.8 | |
)->torch.Tensor: #E edges to collapse | |
E = edges.shape[0] | |
F = faces.shape[0] | |
# face flips | |
ref_normals = calc_face_ref_normals(faces,vertex_normals,normalize=False) #F,3 | |
face_collapses = (face_normals*ref_normals).sum(dim=-1)<0 #F | |
# small faces | |
if min_edge_length is not None: | |
min_face_length = min_edge_length[faces].mean(dim=-1) #F | |
min_area = min_face_length**2 * area_ratio #F | |
face_collapses.logical_or_(face_normals.norm(dim=-1) < min_area*2) #F | |
face_collapses[0] = False | |
# faces to edges | |
face_length = edge_length[face_to_edge] #F,3 | |
if shortest_probability<1: | |
#select shortest edge with shortest_probability chance | |
randlim = round(2/(1-shortest_probability)) | |
rand_ind = torch.randint(0,randlim,size=(F,),device=faces.device).clamp_max_(2) #selected edge local index in face | |
sort_ind = torch.argsort(face_length,dim=-1,descending=True) #F,3 | |
local_ind = sort_ind.gather(dim=-1,index=rand_ind[:,None]) | |
else: | |
local_ind = torch.argmin(face_length,dim=-1)[:,None] #F,1 0...2 shortest edge local index in face | |
edge_ind = face_to_edge.gather(dim=1,index=local_ind)[:,0] #F 0...E selected edge global index | |
edge_collapses = torch.zeros(E,dtype=torch.long,device=vertices.device) | |
edge_collapses.scatter_add_(dim=0,index=edge_ind,src=face_collapses.long()) #TODO legal for bool? | |
return edge_collapses.bool() | |
def flip_edges( | |
vertices:torch.Tensor, #V,3 first unused | |
faces:torch.Tensor, #F,3 long, first must be 0, 0 for unused | |
edges:torch.Tensor, #E,2 long, first must be 0, 0 for unused, lower vertex index first | |
edge_to_face:torch.Tensor, #E,[left,right],[face,side] | |
with_border:bool=True, #handle border edges (D=4 instead of D=6) | |
with_normal_check:bool=True, #check face normal flips | |
stable:bool=False, #only for unit testing | |
): | |
V = vertices.shape[0] | |
E = edges.shape[0] | |
device=vertices.device | |
vertex_degree = torch.zeros(V,dtype=torch.long,device=device) #V long | |
vertex_degree.scatter_(dim=0,index=edges.reshape(E*2),value=1,reduce='add') | |
neighbor_corner = (edge_to_face[:,:,1] + 2) % 3 #go from side to corner | |
neighbors = faces[edge_to_face[:,:,0],neighbor_corner] #E,LR=2 | |
edge_is_inside = neighbors.all(dim=-1) #E | |
if with_border: | |
# inside vertices should have D=6, border edges D=4, so we subtract 2 for all inside vertices | |
# need to use float for masks in order to use scatter(reduce='multiply') | |
vertex_is_inside = torch.ones(V,2,dtype=torch.float32,device=vertices.device) #V,2 float | |
src = edge_is_inside.type(torch.float32)[:,None].expand(E,2) #E,2 float | |
vertex_is_inside.scatter_(dim=0,index=edges,src=src,reduce='multiply') | |
vertex_is_inside = vertex_is_inside.prod(dim=-1,dtype=torch.long) #V long | |
vertex_degree -= 2 * vertex_is_inside #V long | |
neighbor_degrees = vertex_degree[neighbors] #E,LR=2 | |
edge_degrees = vertex_degree[edges] #E,2 | |
# | |
# loss = Sum_over_affected_vertices((new_degree-6)**2) | |
# loss_change = Sum_over_neighbor_vertices((degree+1-6)**2-(degree-6)**2) | |
# + Sum_over_edge_vertices((degree-1-6)**2-(degree-6)**2) | |
# = 2 * (2 + Sum_over_neighbor_vertices(degree) - Sum_over_edge_vertices(degree)) | |
# | |
loss_change = 2 + neighbor_degrees.sum(dim=-1) - edge_degrees.sum(dim=-1) #E | |
candidates = torch.logical_and(loss_change<0, edge_is_inside) #E | |
loss_change = loss_change[candidates] #E' | |
if loss_change.shape[0]==0: | |
return | |
edges_neighbors = torch.concat((edges[candidates],neighbors[candidates]),dim=-1) #E',4 | |
_,order = loss_change.sort(descending=True, stable=stable) #E' | |
rank = torch.zeros_like(order) | |
rank[order] = torch.arange(0,len(rank),device=rank.device) | |
vertex_rank = torch.zeros((V,4),dtype=torch.long,device=device) #V,4 | |
torch_scatter.scatter_max(src=rank[:,None].expand(-1,4),index=edges_neighbors,dim=0,out=vertex_rank) | |
vertex_rank,_ = vertex_rank.max(dim=-1) #V | |
neighborhood_rank,_ = vertex_rank[edges_neighbors].max(dim=-1) #E' | |
flip = rank==neighborhood_rank #E' | |
if with_normal_check: | |
# cl-<-----e1 e0,e1...edge, e0<e1 | |
# | /A L,R....left and right face | |
# | L / | both triangles ordered counter clockwise | |
# | / R | normals pointing out of screen | |
# V/ | | |
# e0---->-cr | |
v = vertices[edges_neighbors] #E",4,3 | |
v = v - v[:,0:1] #make relative to e0 | |
e1 = v[:,1] | |
cl = v[:,2] | |
cr = v[:,3] | |
n = torch.cross(e1,cl) + torch.cross(cr,e1) #sum of old normal vectors | |
flip.logical_and_(torch.sum(n*torch.cross(cr,cl),dim=-1)>0) #first new face | |
flip.logical_and_(torch.sum(n*torch.cross(cl-e1,cr-e1),dim=-1)>0) #second new face | |
flip_edges_neighbors = edges_neighbors[flip] #E",4 | |
flip_edge_to_face = edge_to_face[candidates,:,0][flip] #E",2 | |
flip_faces = flip_edges_neighbors[:,[[0,3,2],[1,2,3]]] #E",2,3 | |
faces.scatter_(dim=0,index=flip_edge_to_face.reshape(-1,1).expand(-1,3),src=flip_faces.reshape(-1,3)) | |