Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
from lib.net.FBNet import define_G | |
from lib.net.net_util import init_net, VGGLoss | |
from lib.net.HGFilters import * | |
from lib.net.BasePIFuNet import BasePIFuNet | |
import torch | |
import torch.nn as nn | |
class Hallucinator(BasePIFuNet): | |
''' | |
HG PIFu network uses Hourglass stacks as the image filter. | |
It does the following: | |
1. Compute image feature stacks and store it in self.im_feat_list | |
self.im_feat_list[-1] is the last stack (output stack) | |
2. Calculate calibration | |
3. If training, it index on every intermediate stacks, | |
If testing, it index on the last stack. | |
4. Classification. | |
5. During training, error is calculated on all stacks. | |
''' | |
def __init__(self, cfg, error_term=nn.SmoothL1Loss()): | |
super(Hallucinator, self).__init__(error_term=error_term) | |
self.l1_loss = nn.SmoothL1Loss() | |
self.opt = cfg.net | |
if self.training: | |
self.vgg_loss = [VGGLoss()] | |
self.in_nmlB = [ | |
item[0] for item in self.opt.in_nml | |
if '_B' in item[0] or item[0] == 'image' | |
] | |
self.in_nmlL = [ | |
item[0] for item in self.opt.in_nml | |
if '_L' in item[0] or item[0] == 'image' | |
] | |
self.in_nmlB_dim = sum([ | |
item[1] for item in self.opt.in_nml | |
if '_B' in item[0] or item[0] == 'image' | |
]) | |
self.in_nmlL_dim = sum([ | |
item[1] for item in self.opt.in_nml | |
if '_L' in item[0] or item[0] == 'image' | |
]) | |
self.netB = define_G(self.in_nmlB_dim, 3, 64, "global", 4, 9, 1, 3, | |
"instance") | |
self.netL = define_G(self.in_nmlL_dim, 3, 64, "global", 4, 9, 1, 3, | |
"instance") | |
init_net(self) | |
def forward(self, in_tensor): | |
inB_list = [] | |
inL_list = [] | |
for name in self.in_nmlB: | |
inB_list.append(in_tensor[name]) | |
for name in self.in_nmlL: | |
inL_list.append(in_tensor[name]) | |
nmlB = self.netB(torch.cat(inB_list, dim=1)) | |
nmlL = self.netL(torch.cat(inL_list, dim=1)) | |
# ||normal|| == 1 | |
nmlB = nmlB / torch.norm(nmlB, dim=1, keepdim=True) | |
nmlL = nmlL / torch.norm(nmlL, dim=1, keepdim=True) | |
# output: float_arr [-1,1] with [B, C, H, W] | |
mask = (in_tensor['image'].abs().sum(dim=1, keepdim=True) != | |
0.0).detach().float() | |
nmlB = nmlB * mask | |
#nmlL = nmlL * mask | |
return nmlB, nmlL | |
def get_norm_error(self, prd_B, prd_L, tgt): | |
"""calculate normal loss | |
Args: | |
pred (torch.tensor): [B, 6, 512, 512] | |
tagt (torch.tensor): [B, 6, 512, 512] | |
""" | |
tgt_B, tgt_L = tgt['render_B'], tgt['render_L'] | |
l1_B_loss = self.l1_loss(prd_B, tgt_B) | |
l1_L_loss = self.l1_loss(prd_L, tgt_L) | |
with torch.no_grad(): | |
vgg_B_loss = self.vgg_loss[0](prd_B, tgt_B) | |
vgg_L_loss = self.vgg_loss[0](prd_L, tgt_L) | |
total_loss = [ | |
5.0 * l1_B_loss + vgg_B_loss, 5.0 * l1_L_loss + vgg_L_loss | |
] | |
return total_loss | |