PSHuman / lib /net /nerf_util.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
raw
history blame
10.4 kB
import torch
import numpy as np
import cv2
import torch.nn.functional as F
from PIL import Image
def project(xyz, K, RT):
"""
xyz: [N, 3]
K: [3, 3]
RT: [3, 4]
"""
xyz = np.dot(RT[:, :3],xyz.T).T + RT[:, 3:].T
xyz = np.dot(K,xyz.T).T
xy = xyz[:, :2] + 256
return xy
def get_rays(H, W, K, R, T):
# w2c=np.concatenate([R,T],axis=1)
# w2c=np.concatenate([w2c,[[0,0,0,1]]],axis=0)
# c2w=np.linalg.inv(w2c)
# i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
# dirs = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1)
# # Rotate ray directions from camera frame to the world frame
# rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# # Translate camera frame's origin to the world frame. It is the origin of all rays.
# rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
# calculate the camera origin
rays_o = -np.dot(np.linalg.inv(R), T).ravel()+np.array([0,0,500])
# calculate the world coordinates of pixels
i, j = np.meshgrid(np.arange(W, dtype=np.float32),
np.arange(H, dtype=np.float32),
indexing='xy')
#xy1 = np.stack([i, j, np.ones_like(i)], axis=2)
pixel_camera = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1)
pixel_world = np.dot(R.T, (pixel_camera - T.ravel()).reshape(-1,3).T).T.reshape(H,W,3)
# calculate the ray direction
rays_d = pixel_world - rays_o[None, None]
rays_d = rays_d / np.linalg.norm(rays_d, axis=2, keepdims=True)
rays_o = np.broadcast_to(rays_o, rays_d.shape)
return rays_o, rays_d
def get_bound_corners(bounds):
min_x, min_y, min_z = bounds[0]
max_x, max_y, max_z = bounds[1]
corners_3d = np.array([
[min_x, min_y, min_z],
[min_x, min_y, max_z],
[min_x, max_y, min_z],
[min_x, max_y, max_z],
[max_x, min_y, min_z],
[max_x, min_y, max_z],
[max_x, max_y, min_z],
[max_x, max_y, max_z],
])
return corners_3d
def get_bound_2d_mask(bounds, K, pose, H, W):
corners_3d = get_bound_corners(bounds)
corners_2d = project(corners_3d, K, pose)
corners_2d = np.round(corners_2d).astype(int)
mask = np.zeros((H, W), dtype=np.uint8)
cv2.fillPoly(mask, [corners_2d[[0, 1, 3, 2, 0]]], 1)
cv2.fillPoly(mask, [corners_2d[[4, 5, 7, 6, 4]]], 1)
cv2.fillPoly(mask, [corners_2d[[0, 1, 5, 4, 0]]], 1)
cv2.fillPoly(mask, [corners_2d[[2, 3, 7, 6, 2]]], 1)
cv2.fillPoly(mask, [corners_2d[[0, 2, 6, 4, 0]]], 1)
cv2.fillPoly(mask, [corners_2d[[1, 3, 7, 5, 1]]], 1)
return mask
def get_near_far(bounds, ray_o, ray_d):
"""calculate intersections with 3d bounding box"""
bounds = bounds + np.array([-0.01, 0.01])[:, None]
nominator = bounds[None] - ray_o[:, None]
# calculate the step of intersections at six planes of the 3d bounding box
d_intersect = (nominator / (ray_d[:, None] + 1e-9)).reshape(-1, 6)
# calculate the six interections
p_intersect = d_intersect[..., None] * ray_d[:, None] + ray_o[:, None]
# calculate the intersections located at the 3d bounding box
min_x, min_y, min_z, max_x, max_y, max_z = bounds.ravel()
eps = 1e-6
p_mask_at_box = (p_intersect[..., 0] >= (min_x - eps)) * \
(p_intersect[..., 0] <= (max_x + eps)) * \
(p_intersect[..., 1] >= (min_y - eps)) * \
(p_intersect[..., 1] <= (max_y + eps)) * \
(p_intersect[..., 2] >= (min_z - eps)) * \
(p_intersect[..., 2] <= (max_z + eps))
# obtain the intersections of rays which intersect exactly twice
mask_at_box = p_mask_at_box.sum(-1) == 2
p_intervals = p_intersect[mask_at_box][p_mask_at_box[mask_at_box]].reshape(
-1, 2, 3)
# calculate the step of intersections
ray_o = ray_o[mask_at_box]
ray_d = ray_d[mask_at_box]
norm_ray = np.linalg.norm(ray_d, axis=1)
d0 = np.linalg.norm(p_intervals[:, 0] - ray_o, axis=1) / norm_ray
d1 = np.linalg.norm(p_intervals[:, 1] - ray_o, axis=1) / norm_ray
near = np.minimum(d0, d1)
far = np.maximum(d0, d1)
return near, far, mask_at_box
def sample_ray_h36m(img, msk, K, R, T, bounds, nrays, training = True):
H, W = img.shape[:2]
K[2,2]=1
ray_o, ray_d = get_rays(H, W, K, R, T) # world coordinate
pose = np.concatenate([R, T], axis=1)
bound_mask = get_bound_2d_mask(bounds, K, pose, H, W) # 可视化bound mask
# # bound_mask [512,512]
# # save bound mask as image
# bound_mask = bound_mask.astype(np.uint8)
# bound_mask = bound_mask * 255
# bound_mask = Image.fromarray(bound_mask)
# msk_image=Image.fromarray(msk)
# bound_mask.save('bound_mask.png')
# msk_image.save('msk.png')
img[bound_mask != 1] = 0
#msk = msk * bound_mask
if training:
nsampled_rays = 0
# face_sample_ratio = cfg.face_sample_ratio
# body_sample_ratio = cfg.body_sample_ratio
body_sample_ratio = 0.8
ray_o_list = []
ray_d_list = []
rgb_list = []
body_mask_list = []
near_list = []
far_list = []
coord_list = []
mask_at_box_list = []
while nsampled_rays < nrays:
n_body = int((nrays - nsampled_rays) * body_sample_ratio)
n_rand = (nrays - nsampled_rays) - n_body
# sample rays on body
coord_body = np.argwhere(msk > 0)
coord_body = coord_body[np.random.randint(0, len(coord_body)-1, n_body)]
# sample rays in the bound mask
coord = np.argwhere(bound_mask > 0)
coord = coord[np.random.randint(0, len(coord), n_rand)]
coord = np.concatenate([coord_body, coord], axis=0)
ray_o_ = ray_o[coord[:, 0], coord[:, 1]]
ray_d_ = ray_d[coord[:, 0], coord[:, 1]]
rgb_ = img[coord[:, 0], coord[:, 1]]
body_mask_ = msk[coord[:, 0], coord[:, 1]]
near_, far_, mask_at_box = get_near_far(bounds, ray_o_, ray_d_)
ray_o_list.append(ray_o_[mask_at_box])
ray_d_list.append(ray_d_[mask_at_box])
rgb_list.append(rgb_[mask_at_box])
body_mask_list.append(body_mask_[mask_at_box])
near_list.append(near_)
far_list.append(far_)
coord_list.append(coord[mask_at_box])
mask_at_box_list.append(mask_at_box[mask_at_box])
nsampled_rays += len(near_)
ray_o = np.concatenate(ray_o_list).astype(np.float32)
ray_d = np.concatenate(ray_d_list).astype(np.float32)
rgb = np.concatenate(rgb_list).astype(np.float32)
body_mask = (np.concatenate(body_mask_list) > 0).astype(np.float32)
near = np.concatenate(near_list).astype(np.float32)
far = np.concatenate(far_list).astype(np.float32)
coord = np.concatenate(coord_list)
mask_at_box = np.concatenate(mask_at_box_list)
else:
rgb = img.reshape(-1, 3).astype(np.float32)
body_mask = msk.reshape(-1).astype(np.float32)
ray_o = ray_o.reshape(-1, 3).astype(np.float32)
ray_d = ray_d.reshape(-1, 3).astype(np.float32)
near, far, mask_at_box = get_near_far(bounds, ray_o, ray_d)
mask_at_box = np.logical_and(mask_at_box > 0, body_mask > 0)
near = near.astype(np.float32)
far = far.astype(np.float32)
rgb = rgb[mask_at_box]
body_mask = body_mask[mask_at_box]
ray_o = ray_o[mask_at_box]
ray_d = ray_d[mask_at_box]
coord = np.argwhere(mask_at_box.reshape(H, W) == 1)
return rgb, body_mask, ray_o, ray_d, near, far, coord, mask_at_box
def raw2outputs(raw, z_vals, rays_d, white_bkgd=False):
"""Transforms model's predictions to semantically meaningful values.
Args:
raw: [num_rays, num_samples along ray, 4]. Prediction from model.
z_vals: [num_rays, num_samples along ray]. Integration time.
rays_d: [num_rays, 3]. Direction of each ray.
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
disp_map: [num_rays]. Disparity map. Inverse of depth map.
acc_map: [num_rays]. Sum of weights along each ray.
weights: [num_rays, num_samples]. Weights assigned to each sampled color.
depth_map: [num_rays]. Estimated distance to object.
"""
raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists)
dists = z_vals[...,1:] - z_vals[...,:-1]
dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape).to(z_vals.device)], -1) # [N_rays, N_samples]
dists = dists * torch.norm(rays_d[...,None,:], dim=-1)
rgb = raw[...,:3] # [N_rays, N_samples, 3]A
noise = 0.
alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples]
# weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)
weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)).to(z_vals.device), 1.-alpha + 1e-10], -1), -1)[:, :-1] #后面的cumprod是累乘函数,是求Ti这个积分项
rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3] C and c
depth_map = torch.sum(weights * z_vals, -1)
disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map).to(z_vals.device), depth_map / torch.sum(weights, -1))
acc_map = torch.sum(weights, -1)
if white_bkgd:
rgb_map = rgb_map + (1.-acc_map[...,None])
return rgb_map, disp_map, acc_map, weights, depth_map
def get_wsampling_points(ray_o, ray_d, near, far):
"""
sample pts on rays
"""
N_samples=64
# calculate the steps for each ray
t_vals = torch.linspace(0., 1., steps=N_samples)
z_vals = near[..., None] * (1. - t_vals) + far[..., None] * t_vals
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], -1)
lower = torch.cat([z_vals[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape)
z_vals = lower + (upper - lower) * t_rand
pts = ray_o[ :, None] + ray_d[ :, None] * z_vals[..., None]
return pts, z_vals