Spaces:
Sleeping
Sleeping
import datetime | |
import pytz | |
import traceback | |
from torchvision.utils import make_grid | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import torch | |
import json | |
import os | |
from tqdm import tqdm | |
import cv2 | |
import imageio | |
def get_time_for_log(): | |
return datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime( | |
"%Y%m%d %H:%M:%S") | |
def get_trace_for_log(): | |
return str(traceback.format_exc()) | |
def make_grid_(imgs, save_file, nrow=10, pad_value=1): | |
if isinstance(imgs, list): | |
if isinstance(imgs[0], Image.Image): | |
imgs = [torch.from_numpy(np.array(img)/255.) for img in imgs] | |
elif isinstance(imgs[0], np.ndarray): | |
imgs = [torch.from_numpy(img/255.) for img in imgs] | |
imgs = torch.stack(imgs, 0).permute(0, 3, 1, 2) | |
if isinstance(imgs, np.ndarray): | |
imgs = torch.from_numpy(imgs) | |
img_grid = make_grid(imgs, nrow=nrow, padding=2, pad_value=pad_value) | |
img_grid = img_grid.permute(1, 2, 0).numpy() | |
img_grid = (img_grid * 255).astype(np.uint8) | |
img_grid = Image.fromarray(img_grid) | |
img_grid.save(save_file) | |
def draw_caption(img, text, pos, size=100, color=(128, 128, 128)): | |
draw = ImageDraw.Draw(img) | |
# font = ImageFont.truetype(size= size) | |
font = ImageFont.load_default() | |
font = font.font_variant(size=size) | |
draw.text(pos, text, color, font=font) | |
return img | |
def txt2json(txt_file, json_file): | |
with open(txt_file, 'r') as f: | |
items = f.readlines() | |
items = [x.strip() for x in items] | |
with open(json_file, 'w') as f: | |
json.dump(items.tolist(), f) | |
def process_thuman_texture(): | |
path = '/aifs4su/mmcode/lipeng/Thuman2.0' | |
cases = os.listdir(path) | |
for case in tqdm(cases): | |
mtl = os.path.join(path, case, 'material0.mtl') | |
with open(mtl, 'r') as f: | |
lines = f.read() | |
lines = lines.replace('png', 'jpeg') | |
with open(mtl, 'w') as f: | |
f.write(lines) | |
#### for debug | |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" | |
def get_intrinsic_from_fov(fov, H, W, bs=-1): | |
focal_length = 0.5 * H / np.tan(0.5 * fov) | |
intrinsic = np.identity(3, dtype=np.float32) | |
intrinsic[0, 0] = focal_length | |
intrinsic[1, 1] = focal_length | |
intrinsic[0, 2] = W / 2.0 | |
intrinsic[1, 2] = H / 2.0 | |
if bs > 0: | |
intrinsic = intrinsic[None].repeat(bs, axis=0) | |
return torch.from_numpy(intrinsic) | |
def read_data(data_dir, i): | |
""" | |
Return: | |
rgb: (H, W, 3) torch.float32 | |
depth: (H, W, 1) torch.float32 | |
mask: (H, W, 1) torch.float32 | |
c2w: (4, 4) torch.float32 | |
intrinsic: (3, 3) torch.float32 | |
""" | |
background_color = torch.tensor([0.0, 0.0, 0.0]) | |
rgb_name = os.path.join(data_dir, f'render_%04d.webp' % i) | |
depth_name = os.path.join(data_dir, f'depth_%04d.exr' % i) | |
img = torch.from_numpy( | |
np.asarray( | |
Image.fromarray(imageio.v2.imread(rgb_name)) | |
.convert("RGBA") | |
) | |
/ 255.0 | |
).float() | |
mask = img[:, :, -1:] | |
rgb = img[:, :, :3] * mask + background_color[ | |
None, None, : | |
] * (1 - mask) | |
depth = torch.from_numpy( | |
cv2.imread(depth_name, cv2.IMREAD_UNCHANGED)[..., 0, None] | |
) | |
mask[depth > 100.0] = 0.0 | |
depth[~(mask > 0.5)] = 0.0 # set invalid depth to 0 | |
meta_path = os.path.join(data_dir, 'meta.json') | |
with open(meta_path, 'r') as f: | |
meta = json.load(f) | |
c2w = torch.as_tensor( | |
meta['locations'][i]["transform_matrix"], | |
dtype=torch.float32, | |
) | |
H, W = rgb.shape[:2] | |
fovy = meta["camera_angle_x"] | |
intrinsic = get_intrinsic_from_fov(fovy, H=H, W=W) | |
return rgb, depth, mask, c2w, intrinsic | |