Spaces:
Running
on
L40S
Running
on
L40S
import inspect | |
import warnings | |
from typing import Callable, List, Optional, Union, Dict, Any | |
import PIL | |
import torch | |
from packaging import version | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel | |
from diffusers.utils.import_utils import is_accelerate_available | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.embeddings import get_timestep_embedding | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer | |
import os | |
import torchvision.transforms.functional as TF | |
from einops import rearrange | |
logger = logging.get_logger(__name__) | |
class StableUnCLIPImg2ImgPipeline(DiffusionPipeline): | |
""" | |
Pipeline for text-guided image to image generation using stable unCLIP. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
feature_extractor ([`CLIPFeatureExtractor`]): | |
Feature extractor for image pre-processing before being encoded. | |
image_encoder ([`CLIPVisionModelWithProjection`]): | |
CLIP vision model for encoding images. | |
image_normalizer ([`StableUnCLIPImageNormalizer`]): | |
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image | |
embeddings after the noise has been applied. | |
image_noising_scheduler ([`KarrasDiffusionSchedulers`]): | |
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined | |
by `noise_level` in `StableUnCLIPPipeline.__call__`. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`KarrasDiffusionSchedulers`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
""" | |
# image encoding components | |
feature_extractor: CLIPFeatureExtractor | |
image_encoder: CLIPVisionModelWithProjection | |
# image noising components | |
image_normalizer: StableUnCLIPImageNormalizer | |
image_noising_scheduler: KarrasDiffusionSchedulers | |
# regular denoising components | |
tokenizer: CLIPTokenizer | |
text_encoder: CLIPTextModel | |
unet: UNet2DConditionModel | |
scheduler: KarrasDiffusionSchedulers | |
vae: AutoencoderKL | |
def __init__( | |
self, | |
# image encoding components | |
feature_extractor: CLIPFeatureExtractor, | |
image_encoder: CLIPVisionModelWithProjection, | |
# image noising components | |
image_normalizer: StableUnCLIPImageNormalizer, | |
image_noising_scheduler: KarrasDiffusionSchedulers, | |
# regular denoising components | |
tokenizer: CLIPTokenizer, | |
text_encoder: CLIPTextModel, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
# vae | |
vae: AutoencoderKL, | |
num_views: int = 7, | |
): | |
super().__init__() | |
self.register_modules( | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
image_normalizer=image_normalizer, | |
image_noising_scheduler=image_noising_scheduler, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.num_views: int = num_views | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. | |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several | |
steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's | |
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only | |
when their specific submodule has its `forward` method called. | |
""" | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
# TODO: self.image_normalizer.{scale,unscale} are not covered by the offload hooks, so they fails if added to the list | |
models = [ | |
self.image_encoder, | |
self.text_encoder, | |
self.unet, | |
self.vae, | |
] | |
for cpu_offloaded_model in models: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
def _execution_device(self): | |
r""" | |
Returns the device on which the pipeline's models will be executed. After calling | |
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
hooks. | |
""" | |
if not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
""" | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
if do_classifier_free_guidance: | |
normal_prompt_embeds, color_prompt_embeds = torch.chunk(prompt_embeds, 2, dim=0) | |
prompt_embeds = torch.cat([normal_prompt_embeds, normal_prompt_embeds, color_prompt_embeds, color_prompt_embeds], 0) | |
return prompt_embeds | |
def _encode_image( | |
self, | |
image_pil, | |
smpl_pil, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
noise_level: int=0, | |
generator: Optional[torch.Generator] = None | |
): | |
dtype = next(self.image_encoder.parameters()).dtype | |
# ______________________________clip image embedding______________________________ | |
image = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = self.noise_image_embeddings( | |
image_embeds=image_embeds, | |
noise_level=noise_level, | |
generator=generator, | |
) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
# image_embeds = image_embeds.unsqueeze(1) | |
# note: the condition input is same | |
image_embeds = image_embeds.repeat(num_images_per_prompt, 1) | |
if do_classifier_free_guidance: | |
normal_image_embeds, color_image_embeds = torch.chunk(image_embeds, 2, dim=0) | |
negative_prompt_embeds = torch.zeros_like(normal_image_embeds) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeds = torch.cat([negative_prompt_embeds, normal_image_embeds, negative_prompt_embeds, color_image_embeds], 0) | |
# _____________________________vae input latents__________________________________________________ | |
def vae_encode(tensor): | |
image_pt = torch.stack([TF.to_tensor(img) for img in tensor], dim=0).to(device) | |
image_pt = image_pt * 2.0 - 1.0 | |
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor | |
# Note: repeat differently from official pipelines | |
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1) | |
return image_latents | |
image_latents = vae_encode(image_pil) | |
if smpl_pil is not None: | |
smpl_latents = vae_encode(smpl_pil) | |
image_latents = torch.cat([image_latents, smpl_latents], 1) | |
if do_classifier_free_guidance: | |
normal_image_latents, color_image_latents = torch.chunk(image_latents, 2, dim=0) | |
image_latents = torch.cat([torch.zeros_like(normal_image_latents), normal_image_latents, | |
torch.zeros_like(color_image_latents), color_image_latents], 0) | |
return image_embeds, image_latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
image, | |
height, | |
width, | |
callback_steps, | |
noise_level, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: | |
raise ValueError( | |
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings | |
def noise_image_embeddings( | |
self, | |
image_embeds: torch.Tensor, | |
noise_level: int, | |
noise: Optional[torch.FloatTensor] = None, | |
generator: Optional[torch.Generator] = None, | |
): | |
""" | |
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher | |
`noise_level` increases the variance in the final un-noised images. | |
The noise is applied in two ways | |
1. A noise schedule is applied directly to the embeddings | |
2. A vector of sinusoidal time embeddings are appended to the output. | |
In both cases, the amount of noise is controlled by the same `noise_level`. | |
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. | |
""" | |
if noise is None: | |
noise = randn_tensor( | |
image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype | |
) | |
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) | |
image_embeds = self.image_normalizer.scale(image_embeds) | |
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) | |
image_embeds = self.image_normalizer.unscale(image_embeds) | |
noise_level = get_timestep_embedding( | |
timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0 | |
) | |
# `get_timestep_embeddings` does not contain any weights and will always return f32 tensors, | |
# but we might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
noise_level = noise_level.to(image_embeds.dtype) | |
image_embeds = torch.cat((image_embeds, noise_level), 1) | |
return image_embeds | |
def process_dino_feature(self, feat, device, num_images_per_prompt, do_classifier_free_guidance): | |
feat = feat.to(dtype=self.text_encoder.dtype, device=device) | |
if do_classifier_free_guidance: | |
# # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
# seq_len = negative_prompt_embeds.shape[1] | |
# negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
# negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
# negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
feat = torch.cat([feat, feat], 0) | |
return feat | |
# @replace_example_docstring(EXAMPLE_DOC_STRING) | |
def __call__( | |
self, | |
image: Union[torch.FloatTensor, PIL.Image.Image], | |
prompt: Union[str, List[str]], | |
prompt_embeds: torch.FloatTensor = None, | |
dino_feature: torch.FloatTensor = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 20, | |
guidance_scale: float = 10, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
noise_level: int = 0, | |
image_embeds: Optional[torch.FloatTensor] = None, | |
gt_img_in: Optional[torch.FloatTensor] = None, | |
smpl_in: Optional[torch.FloatTensor] = None, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image`, or tensor representing an image batch. The image will be encoded to its CLIP embedding which | |
the unet will be conditioned on. Note that the image is _not_ encoded by the vae and then used as the | |
latents in the denoising process such as in the standard stable diffusion text guided image variation | |
process. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 20): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 10.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
noise_level (`int`, *optional*, defaults to `0`): | |
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in | |
the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details. | |
image_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated CLIP embeddings to condition the unet on. Note that these are not latents to be used in | |
the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as | |
`latents`. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is | |
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt=prompt, | |
image=image, | |
height=height, | |
width=width, | |
callback_steps=callback_steps, | |
noise_level=noise_level | |
) | |
# 2. Define call parameters | |
if isinstance(image, list): | |
batch_size = len(image) | |
elif isinstance(image, torch.Tensor): | |
batch_size = image.shape[0] | |
assert batch_size >= self.num_views and batch_size % self.num_views == 0 | |
elif isinstance(image, PIL.Image.Image): | |
image = [image]*self.num_views*2 | |
batch_size = self.num_views*2 | |
if isinstance(prompt, str): | |
prompt = [prompt] * self.num_views * 2 | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale != 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
) | |
prompt_embeds = self._encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
if dino_feature is not None: | |
dino_feature = self.process_dino_feature(dino_feature, device=device, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
num_images_per_prompt=num_images_per_prompt) | |
# 4. Encoder input image | |
if isinstance(image, list): | |
image_pil = image | |
smpl_pil = smpl_in | |
elif isinstance(image, torch.Tensor): | |
image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] | |
smpl_pil = [TF.to_pil_image(smpl_in[i]) for i in range(smpl_in.shape[0])] if smpl_in is not None else None | |
noise_level = torch.tensor([noise_level], device=device) | |
image_embeds, image_latents = self._encode_image( | |
image_pil=image_pil, | |
smpl_pil=smpl_pil, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
noise_level=noise_level, | |
generator=generator, | |
) | |
# 5. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.out_channels | |
if gt_img_in is not None: | |
latents = gt_img_in * self.scheduler.init_noise_sigma | |
else: | |
latents = self.prepare_latents( | |
batch_size=batch_size, | |
num_channels_latents=num_channels_latents, | |
height=height, | |
width=width, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
generator=generator, | |
latents=latents, | |
) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
eles, focals = [], [] | |
# 8. Denoising loop | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
if do_classifier_free_guidance: | |
normal_latents, color_latents = torch.chunk(latents, 2, dim=0) | |
latent_model_input = torch.cat([normal_latents, normal_latents, color_latents, color_latents], 0) | |
else: | |
latent_model_input = latents | |
latent_model_input = torch.cat([ | |
latent_model_input, image_latents | |
], dim=1) | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
unet_out = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
dino_feature=dino_feature, | |
class_labels=image_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False) | |
noise_pred = unet_out[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
normal_noise_pred_uncond, normal_noise_pred_text, color_noise_pred_uncond, color_noise_pred_text = torch.chunk(noise_pred, 4, dim=0) | |
noise_pred_uncond, noise_pred_text = torch.cat([normal_noise_pred_uncond, color_noise_pred_uncond], 0), torch.cat([normal_noise_pred_text, color_noise_pred_text], 0) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 9. Post-processing | |
if not output_type == "latent": | |
if num_channels_latents == 8: | |
latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0) | |
with torch.no_grad(): | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload last model to CPU | |
# if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
# self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, ) | |
return ImagePipelineOutput(images=image) | |